Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. AAAI Press 【DBLP Link】
【Paper Link】 【Pages】:3-9
【Authors】: Tim Baarslag ; Enrico H. Gerding
【Abstract】: The last two decades have seen a growing interest in the development of automated agents that are able to negotiate on the user's behalf. When representing a user in a negotiation, it is essential for the agent to understand the user's preferences, without exposing them to elicitation fatigue. To this end, we propose a new model in which a negotiating agent may incrementally elicit the user's preference during the negotiation. We introduce an optimal elicitation strategy that decides, at every stage of the negotiation, how much additional user information to extract at a certain cost. Finally, we demonstrate the effectiveness of our approach by combining our policy with well-known negotiation strategies and show that it significantly outperforms other elicitation strategies.
【Keywords】:
【Paper Link】 【Pages】:10-17
【Authors】: Matteo Baldoni ; Cristina Baroglio ; Amit K. Chopra ; Munindar P. Singh
【Abstract】: We consider the design and enactment of multiagent protocols that describe collaboration using "normative" or "social" abstractions, specifically, commitments. A (multiagent) protocol defines the relevant social states and how they progress; each participant maintains a local projection of these states and acts accordingly. Protocols expose two important challenges: (1) how to compose them in a way that respects commitments and (2) how to verify the compliance of the parties with the social states. Individually, these challenges are inadequately studied and together not at all. We motivate the notion of a social context to capture how a protocol may be enacted. A protocol can be verifiably enacted when its participants can determine each other's compliance. We first show the negative result that even when protocols can be verifiably enacted in respective social contexts, their composition cannot be verifiably enacted in the composition of those social contexts. We next show how to expand such a protocol so that it can be verifiably enacted. Our approach involves design rules to specify composite protocols so they would be verifiably enactable. Our approach demonstrates a use of dialectical commitments, which have previously been overlooked in the protocols literature.
【Keywords】:
【Paper Link】 【Pages】:18-24
【Authors】: Florian Brandl ; Felix Brandt ; Christian Geist ; Johannes Hofbauer
【Abstract】: Voting rules are powerful tools that allow multiple agents to aggregate their preferences in order to reach joint decisions. A common flaw of some voting rules, known as the no-show paradox, is that agents may obtain a more preferred outcome by abstaining from an election. We study strategic abstention for set-valued voting rules based on Kelly's and Fishburn's preference extensions. Our contribution is twofold. First, we show that, whenever there are at least five alternatives, every Pareto-optimal majoritarian voting rule suffers from the no-show paradox with respect to Fishburn's extension. This is achieved by reducing the statement to a finite — yet very large — problem, which is encoded as a formula in propositional logic and then shown to be unsatisfiable by a SAT solver. We also provide a human-readable proof which we extracted from a minimal unsatisfiable core of the formula. Secondly, we prove that every voting rule that satisfies two natural conditions cannot be manipulated by strategic abstention with respect to Kelly's extension. We conclude by giving examples of well-known Pareto-optimal majoritarian voting rules that meet these requirements.
【Keywords】:
【Paper Link】 【Pages】:25-31
【Authors】: Ioannis Caragiannis ; Xenophon Chatzigeorgiou ; Panagiotis Kanellopoulos ; George A. Krimpas ; Nikos Protopapas ; Alexandros A. Voudouris
【Abstract】: Motivated by recent progress on pricing in the AI literature, we study marketplaces that contain multiple vendors offering identical or similar products and unit-demand buyers with different valuations on these vendors. The objective of each vendor is to set the price of its product to a fixed value so that its profit is maximized. The profit depends on the vendor's price itself and the total volume of buyers that find the particular price more attractive than the price of the vendor's competitors. We model the behaviour of buyers and vendors as a two-stage full-information game and study a series of questions related to the existence, efficiency (price of anarchy) and computational complexity of equilibria in this game. To overcome situations where equilibria do not exist or exist but are highly inefficient, we consider the scenario where some of the vendors are subsidized in order to keep prices low and buyers highly satisfied.
【Keywords】:
【Paper Link】 【Pages】:32-38
【Authors】: Adam Clearwater ; Clemens Puppe ; Arkadii Slinko
【Abstract】: Demange (2012) generalized the classical single-crossing property to the intermediate property on median graphs and proved that the representative voter theorem still holds for this more general framework. We complement her result with proving that the linear orders of any profile which is intermediate on a median graph form a Condorcet domain. We prove that for any median graph there exists a profile that is intermediate with respect to that graph and that one may need at least as many alternatives as vertices to construct such a profile. We provide a polynomial-time algorithm to recognize whether or not a given profile is intermediate with respect to some median graph. Finally, we show that finding winners for the Chamberlin-Courant rule is polynomial-time solvable or profiles that are single-crossing on a tree.
【Keywords】:
【Paper Link】 【Pages】:39-45
【Authors】: Ross Conroy ; Yifeng Zeng ; Marc Cavazza ; Yingke Chen
【Abstract】: Interactive dynamic influence diagrams(I-DIDs) are a well recognized decision model that explicitly considers how multiagent interaction affects individual decision making. To predict behavior of other agents, I-DIDs require models of the other agents to be known ahead of time and manually encoded. This becomes a barrier to I-DID applications in a human-agent interaction setting, such as development of intelligent non-player characters(NPCs) in real-time strategy(RTS) games, where models of other agents or human players are often inaccessible to domain experts. In this paper, we use automatic techniques for learning behavior of other agents from replay data in RTS games. We propose a learning algorithm with improvement over existing work by building a full profile of agent behavior. This is the first time that data-driven learning techniques are embedded into the I-DID decision making framework. We evaluate the performance of our approach on two test cases.
【Keywords】:
【Paper Link】 【Pages】:46-52
【Authors】: Jilles Steeve Dibangoye ; Olivier Buffet ; Olivier Simonin
【Abstract】: The intractability in cooperative, decentralized control models is mainly due to prohibitive memory requirements in both optimal policies and value functions. The complexity analysis has emerged as the standard method to estimating the memory needed for solving a given computational problem, but complexity results may be somewhat limited. This paper introduces a general methodology — structural analysis — for the design of optimality-preserving concise policies and value functions, which will eventually lead to the development of efficient theory and algorithms. For the first time, we show that memory requirements for policies and value functions may be asymmetric, resulting in cooperative, decentralized control models with exponential reductions in memory requirements.
【Keywords】:
【Paper Link】 【Pages】:53-60
【Authors】: Barbara Dunin-Keplicz ; Alina Strachocka
【Abstract】: In the contemporary autonomous systems the role of complex interactions such as (possibly relaxed) dialogues is increasing significantly. In this paper we provide a paraconsistent and paracomplete implementation of inquiry dialogue under realistic assumptions regarding availability and quality of information. Various strategies for dealing with unsure and inconsistent information are analyzed. The corresponding dialogue outcomes are further evaluated against the (paraconsistent and paracomplete) distributed beliefs of the group. A specific 4-valued logic underpins the presented framework. Thanks to the qualities of the implementation tool: a rule-based query language 4QL, our solution is both expressive and tractable.
【Keywords】:
【Paper Link】 【Pages】:61-67
【Authors】: Yilin Kang ; Ah-Hwee Tan ; Chunyan Miao
【Abstract】: While a variety of persuasion agents have been created and applied in different domains such as marketing, military training and health industry, there is a lack of a model which can provide a unified framework for different persuasion strategies. Specifically, persuasion is not adaptable to the individuals' personal states in different situations. Grounded in the Elaboration Likelihood Model (ELM), this paper presents a computational model called Model for Adaptive Persuasion (MAP) for virtual agents. MAP is a semi-connected network model which enables an agent to adapt its persuasion strategies through feedback. We have implemented and evaluated a MAP-based virtual nurse agent who takes care and recommends healthy lifestyle habits to the elderly. Our experimental results show that the MAP-based agent is able to change the others' attitudes and behaviors intentionally, interpret individual differences between users, and adapt to user's behavior for effective persuasion.
【Keywords】:
【Paper Link】 【Pages】:68-74
【Authors】: Vadim Levit ; Zohar Komarovsky ; Tal Grinshpoun ; Amnon Meisels
【Abstract】: Two incentive mechanisms for Boolean games were proposed recently - taxation schemes and side payments. Both mechanisms have been shown to be able to secure a pure Nash equilibrium (PNE) for Boolean games. A complete characterization of outcomes that can be transformed to PNEs is given for each of the two incentive mechanisms. Side payments are proved to be a weaker mechanism in the sense that the outcomes that they can transform to PNEs are a subset of those transformable by taxation. A family of social-network-based Boolean games, which demonstrates the differences between the two mechanisms for securing a PNE, is presented. A distributed search algorithm for finding the side payments needed for securing a PNE is proposed. An empirical evaluation demonstrates the properties of the two mechanisms on the family of social-network-based Boolean games.
【Keywords】:
【Paper Link】 【Pages】:75-81
【Authors】: Danyan Lv ; Zhaofeng Li ; Yichuan Jiang
【Abstract】: Animals in social foraging not only present the ordered and aggregated group movement but also the individual movement patterns of Lévy walks that are characterized as the power-law frequency distribution of flight lengths. The environment and the conspecific effects between group members are two fundamental inducements to the collective behavior. However, most previous models emphasize one of the two inducements probably because of the great difficulty to solve the behavior conflict caused by two inducements. Here, we propose an environment-driven social force model to simulate overall foraging process of an agent group. The social force concept is adopted to quantify the conspecific effects and the interactions between individuals and the environment. The cohesion-first rule is implemented to solve the conflict, which means that individuals preferentially guarantee the collective cohesion under the environmental effect. The obtained results efficiently comply with the empirical reports that mean the Lévy walk pattern of individual movement paths and the high consistency and cohesion of the entity group. By extensive simulations, we also validate the impact of two inducements for individual behaviors in comparison with several classic models.
【Keywords】:
【Paper Link】 【Pages】:82-89
【Authors】: Timo Mennle ; Michael Weiss ; Basil Philipp ; Sven Seuken
【Abstract】: We consider three important, non-strategyproof assignment mechanisms: Probabilistic Serial and two variants of the Boston mechanism. Under each of these mechanisms, we study the agent's manipulation problem of determining a best response, i.e., a report that maximizes the agent's expected utility. In particular, we consider local manipulation strategies, which are simple heuristics based on local, greedy search. We make three main contributions. First, we present results from a behavioral experiment (conducted on Amazon Mechanical Turk) which demonstrate that human manipulation strategies can largely be explained by local manipulation strategies. Second, we prove that local manipulation strategies may fail to solve the manipulation problem optimally. Third, we show via large-scale simulations that despite this non-optimality, these strategies are very effective on average. Our results demonstrate that while the manipulation problem may be hard in general, even cognitively or computationally bounded (human) agents can find near-optimal solutions almost all the time via simple local search strategies.
【Keywords】:
【Paper Link】 【Pages】:90-96
【Authors】: Gianpiero Monaco ; Piotr Sankowski ; Qiang Zhang
【Abstract】: Pricing-based mechanisms have been widely studied and developed for resource allocation in multi-agent systems. One of the main goals in such studies is to avoid envy between the agents, i.e., guarantee fair allocation. However, even the simplest combinatorial cases of this problem is not well understood. Here, we try to fill these gaps and design polynomial revenue maximizing pricing mechanisms to allocate homogeneous resources among buyers in envy-free manner. In particular, we consider envy-free outcomes in which all buyers' utilities are maximized. We also consider pair envy-free outcomes in which all buyers prefer their allocations to the allocations obtained by other agents. For both notions of envy-freeness, we consider item and bundle pricing schemes. Our results clearly demonstrate the limitations and advantages in terms of revenue between these two different notions of envy-freeness.
【Keywords】:
【Paper Link】 【Pages】:97-103
【Authors】: Zhaohong Sun ; Hideaki Hata ; Taiki Todo ; Makoto Yokoo
【Abstract】: In this paper we study the exchange of indivisible objects where agents' possible preferences over the objects are strict and share a common structure among all of them, which represents a certain level of asymmetry among objects. A typical example of such an exchange model is a re-scheduling of tasks over several processors, since all task owners are naturally assumed to prefer that their tasks are assigned to fast processors rather than slow ones. We focus on designing exchange rules (a.k.a.mechanisms) that simultaneously satisfy strategyproofness, individual rationality, and Pareto efficiency. We first provide a general impossibility result for agents' preferences that are determined in an additive manner, and then show an existence of such an exchange rule for further restricted lexicographic preferences. We finally find that for the restricted case, a previously known equivalence between the single-valuedness of the strict core and the existence of such an exchange rule does not carry over.
【Keywords】:
【Paper Link】 【Pages】:104-110
【Authors】: Paolo Viappiani
【Abstract】: Positional scoring rules are often used for rank aggregation. In this work we study how scoring rules can be formulated as the minimization of some distance measures between rankings, and we also consider a new family of aggregation methods, called biased scoring rules. This work extends a previous known observation connecting Borda count with the minimization of the sum of the Spearman distances (calculated with respect to a set of input rankings). In particular we consider generalizations of the Spearman distance that can give different weights to items and positions; we also handle the case of incomplete rank data. This has applications in the clustering of rank data, where two main steps need to be performed: aggregating rankings of the same cluster into a representative ranking (the cluster's centroid) and assigning each ranking to its closest centroid. Using the proper combination of scoring rules (for aggregation) and distances (for assignment), it is possible to perform clustering in a computationally efficient way and as well account for specific desired behaviors (give more weight to top positions, bias the centroids in favor of particular items).
【Keywords】:
【Paper Link】 【Pages】:111-117
【Authors】: Dongxia Wang ; Tim Muller ; Jie Zhang ; Yang Liu
【Abstract】: Unfair rating attacks happen in existing trust and reputation systems, lowering the quality of the systems. There exists a formal model that measures the maximum impact of independent attackers [Wang et al., 2015] — based on information theory. We improve on these results in multiple ways: (1) we alter the methodology to be able to reason about colluding attackers as well, and (2) we extend the method to be able to measure the strength of any attacks (rather than just the strongest attack). Using (1), we identify the strongest collusion attacks, helping construct robust trust system. Using (2), we identify the strength of (classes of) attacks that we found in the literature. Based on this, we help to overcome a shortcoming of current research into collusion-resistance — specific (types of) attacks are used in simulations, disallowing direct comparisons between analyses of systems.
【Keywords】:
【Paper Link】 【Pages】:118-124
【Authors】: Zihe Wang ; Pingzhong Tang
【Abstract】: We investigate the problem of revenue optimal mechanism design [Myerson, 1981] under the context of the partial rationality model, where buyers randomize between two modes: rational and irrational. When a buyer is irrational (can be thought of as lazy), he acts according to certain fixed strategies, such as bidding his true valuation. The seller cannot observe the buyer's valuation, or his rationality mode, but treat them as random variables from known distributions. The seller's goal is to design a single-shot auction that maximizes her expected revenue. A minor generalization as it may seem, our findings are in sharp contrast to Myerson's theory on the standard rational bidder case. In particular, we show that, even for the simplest setting with one buyer, direct value revelation loses generality. However, we do show that, in terms of revenue, the optimal value-revelation and type-revelation mechanisms are equivalent. In addition, the posted-price mechanism is no longer optimal. In fact, the more complicated the mechanism, the higher the revenue. For the case where there are multiple bidders with IID uniform valuations, we show that when the irrational buyers are truthful, first price auction yields more revenue than second price auction.
【Keywords】:
【Paper Link】 【Pages】:125-131
【Authors】: Florian Wisser
【Abstract】: Despite some success of Perfect Information Monte Carlo Sampling (PIMC) in imperfect information games in the past, it has been eclipsed by other approaches in recent years. Standard PIMC has well-known shortcomings in the accuracy of its decisions, but has the advantage of being simple, fast, robust and scalable, making it well-suited for imperfect information games with large state-spaces. We propose Presumed Value PIMC resolving the problem of overestimation of opponent's knowledge of hidden information in future game states. The resulting AI agent was tested against human experts in Schnapsen, a Central European 2-player trick-taking card game, and performs above human expert-level.
【Keywords】:
【Paper Link】 【Pages】:132-138
【Authors】: Feng Wu ; Sarvapali D. Ramchurn ; Wenchao Jiang ; Joel E. Fischer ; Tom Rodden ; Nicholas R. Jennings
【Abstract】: We consider a setting where an agent-based planner instructs teams of human emergency responders to perform tasks in the real world. Due to uncertainty in the environment and the inability of the planner to consider all human preferences and all attributes of the real-world, humans may reject plans computed by the agent. A naive solution that re-plans given a rejection is inefficient and does not guarantee the new plan will be acceptable. Hence, we propose a new model re-planning problem using a Multi-agent Markov Decision Process that integrates potential rejections as part of the planning process and propose a novel algorithm to efficiently solve this new model. We empirically evaluate our algorithm and show that it outperforms current benchmarks. Our algorithm is also shown to perform better in pilot studies with real humans.
【Keywords】:
【Paper Link】 【Pages】:139-145
【Authors】: Bolei Xu ; Tao Qin ; Guoping Qiu ; Tie-Yan Liu
【Abstract】: We study the problem of how to optimize a cloud service provider's pricing policy so as to better compete with other providers. Different from previous work, we take both the evolution of the market and the competition between multiple cloud providers into consideration while optimizing the pricing strategy for the provider. Inspired by the real situations in today's cloud market, we consider a situation in which there is only one provider who actively optimizes his/her pricing policy, while other providers adopt a follow-up policy to match his/her price cut. To compute optimal pricing policy under the above settings, we decompose the optimization problem into two steps: (1) When the market finally becomes saturated, we use Q-learning, a method of reinforcement learning, to derive an optimal pricing policy for the stationary market; (2) Based on the optimal policy for the stationary market, we use backward induction to derive an optimal pricing policy for the situation of competition in an evolutionary market. Numerical simulations demonstrate the effectiveness of our proposed approach.
【Keywords】:
【Paper Link】 【Pages】:146-155
【Authors】: Yexiang Xue ; Stefano Ermon ; Carla P. Gomes ; Bart Selman
【Abstract】: Exploiting parallelism is a key strategy for speeding up computation. However, on hard combinatorial problems, such a strategy has been surprisingly challenging due to the intricate variable interactions.We introduce a novel way in which parallelism can be used to exploit hidden structure of hard combinatorial problems. Our approach complements divide-and-conquer and portfolio approaches. We evaluate our approach on the minimum set basis problem: a core combinatorial problem with a range of applications in optimization, machine learning, and system security. We also highlight a novel sustainability related application, concerning the discovery of new materials for renewable energy sources such as improved fuel cell catalysts. In our approach, a large number of smaller sub-problems are identified and solved concurrently. We then aggregate the information from those solutions, and use this information to initialize the search of a global, complete solver. We show that this strategy leads to a substantial speed-up over a sequential approach, since the aggregated sub-problem solution information often provides key structural insights to the complete solver. Our approach also greatly outperforms state-of-the-art incomplete solvers in terms of solution quality. Our work opens up a novel angle for using parallelism to solve hard combinatorial problems.
【Keywords】:
【Paper Link】 【Pages】:156-163
【Authors】: Sahbi Benlamine ; Maher Chaouachi ; Serena Villata ; Elena Cabrio ; Claude Frasson ; Fabien Gandon
【Abstract】: Argumentation is often seen as a mechanism to support different forms of reasoning such that decision-making and persuasion, but all these approaches assume a purely rational behavior of the involved actors. However, humans are proved to behave differently, mixing rational and emotional attitudes to guide their actions, and it has been claimed that there exists a strong connection between the argumentation process and the emotions felt by people involved in such process. In this paper, we assess this claim by means of an experiment: during several debates people's argumentation in plain English is connected and compared to the emotions automatically detected from the participants. Our results show a correspondence between emotions and argumentation elements, e.g., when in the argumentation two opposite opinions are conflicting this is reflected in a negative way on the debaters' emotions.
【Keywords】:
【Paper Link】 【Pages】:164-170
【Authors】: Robert Bredereck ; Jiehua Chen ; Rolf Niedermeier ; Toby Walsh
【Abstract】: We study computational problems for two popular parliamentary voting procedures: the amendment procedure and the successive procedure. While finding successful manipulations or agenda controls is tractable for both procedures, our real-world experimental results indicate that most elections cannot be manipulated by a few voters and agenda control is typically impossible. If the voter preferences are incomplete, then finding possible winners is NP-hard for both procedures. Whereas finding necessary winners is coNP-hard for the amendment procedure, it is polynomial-time solvable for the successive one.
【Keywords】:
【Paper Link】 【Pages】:171-177
【Authors】: Fabian Hadiji ; Martin Mladenov ; Christian Bauckhage ; Kristian Kersting
【Abstract】: Many collective human activities have been shown to exhibit universal patterns. However, the possibility of regularities underlying researcher migration in computer science (CS) has barely been explored at global scale. To a large extend, this is due to official and commercial records being restricted, incompatible between countries, and especially not registered across researchers. We overcome these limitations by building our own, transnational, large-scale dataset inferred from publicly available information on the Web. Essentially, we use Label Propagation (LP) to infer missing geo-tags of author-paper-pairs retrieved from online bibliographies. On this dataset, we then find statistical regularities that explain how researchers in CS move from one place to another. However, although vanilla LP is simple and has been remarkably successful, its run time can suffer from unexploited symmetries of the underlying graph. Consequently, we introduce compressed LP (CLP) that exploits these symmetries to reduce the dimensions of the matrix inverted by LP to obtain optimal labeling scores. We prove that CLP reaches identical labeling scores as LP, while often being significantly faster with lower memory usage.
【Keywords】:
【Paper Link】 【Pages】:178-184
【Authors】: Dingjiang Huang ; Yan Zhu ; Bin Li ; Shuigeng Zhou ; Steven C. H. Hoi
【Abstract】: Online portfolio selection (PS) has been extensively studied in artificial intelligence and machine learning communities in recent years. An important practical issue of online PS is transaction cost, which is unavoidable and nontrivial in real financial trading markets. Most existing strategies, such as universal portfolio (UP) based strategies, often rebalance their target portfolio vectors at every investment period, and thus the total transaction cost increases rapidly and the final cumulative wealth degrades severely. To overcome the limitation, in this paper we investigate new investment strategies that rebalances its portfolio only at some selected instants. Specifically, we design a novel on-line PS strategy named semi-universal portfolio (SUP) strategy under transaction cost, which attempts to avoid rebalancing when the transaction cost outweighs the benefit of trading. We show that the proposed SUP strategy is universal and has an upper bound on the regret. We present an efficient implementation of the strategy based on non-uniform random walks and online factor graph algorithms. Empirical simulation on real historical markets show that SUP can overcome the drawback of existing UP based transaction cost aware algorithms and achieve significantly better performance. Furthermore, SUP has a polynomial complexity in the number of stocks and thus is efficient and scalable in practice.
【Keywords】:
【Paper Link】 【Pages】:185-191
【Authors】: Marco Lippi ; Paolo Torroni
【Abstract】: Argumentation mining aims to automatically identify structured argument data from unstructured natural language text. This challenging, multi-faceted task is recently gaining a growing attention, especially due to its many potential applications. One particularly important aspect of argumentation mining is claim identification. Most of the current approaches are engineered to address specific domains. However, argumentative sentences are often characterized by common rhetorical structures, independently of the domain. We thus propose a method that exploits structured parsing information to detect claims without resorting to contextual information, and yet achieve a performance comparable to that of state-of-the-art methods that heavily rely on the context.
【Keywords】:
【Paper Link】 【Pages】:192-200
【Authors】: Wen Pu ; Jaesik Choi ; Yunseong Hwang ; Eyal Amir
【Abstract】: Exponential Random Graphs Models (ERGM) are common, simple statistical models for social network and other network structures. Unfortunately, inference and learning with them is hard even for small networks because their partition functions are intractable for precise computation. In this paper, we introduce a new quadratic time deterministic approximation to these partition functions. Our main insight enabling this advance is that subgraph statistics is sufficient to derive a lower bound for partition functions given that the model is not dominated by a few graphs. The proposed method differs from existing methods in its ways of exploiting asymptotic properties of subgraph statistics. Compared to the current Monte Carlo simulation based methods, the new method is scalable, stable, and precise enough for inference tasks.
【Keywords】:
【Paper Link】 【Pages】:201-208
【Authors】: Ming Yin ; Yiling Chen
【Abstract】: Recent work has shown that the quality of work produced in a crowdsourcing working session can be influenced by the presence of performance-contingent financial incentives, such as bonuses for exceptional performance, in the session. We take an algorithmic approach to decide when to offer bonuses in a working session to improve the overall utility that a requester derives from the session. Specifically, we propose and train an input-output hidden Markov model to learn the impact of bonuses on work quality and then use this model to dynamically decide whether to offer a bonus on each task in a working session to maximize a requester's utility. Experiments on Amazon Mechanical Turk show that our approach leads to higher utility for the requester than fixed and random bonus schemes do. Simulations on synthesized data sets further demonstrate the robustness of our approach against different worker population and worker behavior in improving requester utility.
【Keywords】:
【Paper Link】 【Pages】:209-215
【Authors】: Suiqian Luo ; Pingzhong Tang
【Abstract】: We explore the mechanism design problem for lung exchange and its implementation in practice. We prove that determining whether there exists a non-trivial solution of the lung exchange problem is NP-complete. We propose a mechanism that is individually rational, strategy-proof and maximizes exchange size. To implement this mechanism in practice, we propose an algorithm based on Integer Linear Program and another based on search. Both of our algorithms for this mechanism yield excellent performances in simulated data sets.
【Keywords】:
【Paper Link】 【Pages】:216-223
【Authors】: Catherine Moon ; Vincent Conitzer
【Abstract】: Standard results on and algorithms for repeated games assume that defections are instantly observable. In reality, it may take some time for the knowledge that a defection has occurred to propagate through the social network. How does this affect the structure of equilibria and algorithms for computing them? In this paper, we consider games with cooperation and defection. We prove that there exists a unique maximal set of forever-cooperating agents in equilibrium and give an efficient algorithm for computing it. We then evaluate this algorithm on random graphs and find experimentally that there appears to be a phase transition between cooperation everywhere and defection everywhere, based on the value of cooperation and the discount factor. Finally, we provide a condition for when the equilibrium found is credible, in the sense that agents are in fact motivated to punish deviating agents. We find that this condition always holds in our experiments, provided the graphs are sufficiently large.
【Keywords】:
【Paper Link】 【Pages】:224-231
【Authors】: Changjun Wang ; Weidong Ma ; Tao Qin ; Xujin Chen ; Xiaodong Hu ; Tie-Yan Liu
【Abstract】: In this paper, we study the problem of designing new mechanisms for selling reserved instances (al-so referred to as virtual machines) in cloud computing. Unlike the practice in today's clouds in which users only have a few predefined options to reserve instances (i.e., either 1-year reservation or 3-year reservation), we allow users to reserve resources for any length and from any time point in the future. Our goal is to maximize the social welfare. We propose two mechanisms, one for the case where all the jobs are tight (their lengths are exactly their reservation time intervals), and the other for the more general case where jobs are delayable and have some flexibility on their reservations. Both of the mechanisms are prompt in the sense that the acceptance and the payment for a job is determined at the very moment of its arrival. We use competitive analysis to evaluate the performance of our mechanisms, and show that both of the mechanisms have a competitive ratio of O(ln(kT )) under some mild assumption, where k (res. T ) is the maximum ratio between per-instance-hour valuation (res. length) of any two jobs. We then prove that no algorithm can achieve a competitive ratio better than ln(2kT ) under the same assumption. Therefore, our mechanisms are optimal within a constant factor.
【Keywords】:
【Paper Link】 【Pages】:232-238
【Authors】: Roberto Amadini ; Maurizio Gabbrielli ; Jacopo Mauro
【Abstract】: In Constraint Programming (CP), a portfolio solver uses a variety of different solvers for solving a given Constraint Satisfaction / Optimization Problem. In this paper we introduce sunny-cp2: the first parallel CP portfolio solver that enables a dynamic, cooperative, and simultaneous execution of its solvers in a multicore setting. It incorporates state-of-the-art solvers, providing also a usable and configurable framework. Empirical results are very promising. sunny-cp2 can even outperform the performance of the oracle solver which always selects the best solver of the portfolio for a given problem.
【Keywords】:
【Paper Link】 【Pages】:239-245
【Authors】: Jeremias Berg ; Paul Saikko ; Matti Järvisalo
【Abstract】: Solvers for the Maximum satisfiability (MaxSAT) problem find an increasing number of applications today. We focus on improving MaxHS — one of the most successful recent MaxSAT algorithms — via SAT-based preprocessing. We show that employing SAT-based preprocessing via the so-called labelled CNF (LCNF) framework before calling MaxHS can in some cases greatly degrade the performance of the solver. As a remedy, we propose a lifting of MaxHS that works directly on LCNFs, allowing for a tighter integration of SAT-based preprocessing and MaxHS. Our empirical results on standard crafted and industrial weighted partial MaxSAT Evaluation benchmarks show overall improvements over the original MaxHS algorithm both with and without SAT-based preprocessing.
【Keywords】:
【Paper Link】 【Pages】:246-252
【Authors】: Nikolaj Bjørner ; Nina Narodytska
【Abstract】: Core-guided MAXSAT algorithms dominate other methods in solving industrial MAXSAT problems. In this work, we propose a new efficient algorithm that is guided by correction sets and cores. At every iteration, the algorithm obtains a correction set or a core, which is then used to rewrite the formula using incremental and succinct transformations. We theoretically show that correction sets and cores have complementary strengths and empirically demonstrate that their combination leads to an efficient MAXSAT solver that outperforms state-of-the-art WPMS solvers on the 2014 Evaluation on industrial instances.
【Keywords】:
【Paper Link】 【Pages】:253-259
【Authors】: Abram L. Friesen ; Pedro M. Domingos
【Abstract】: Continuous optimization is an important problem in many areas of AI, including vision, robotics, probabilistic inference, and machine learning. Unfortunately, most real-world optimization problems are nonconvex, causing standard convex techniques to find only local optima, even with extensions like random restarts and simulated annealing. We observe that, in many cases, the local modes of the objective function have combinatorial structure, and thus ideas from combinatorial optimization can be brought to bear. Based on this, we propose a problem-decomposition approach to nonconvex optimization. Similarly to DPLL-style SAT solvers and recursive conditioning in probabilistic inference, our algorithm, RDIS, recursively sets variables so as to simplify and decompose the objective function into approximately independent sub-functions, until the remaining functions are simple enough to be optimized by standard techniques like gradient descent. The variables to set are chosen by graph partitioning, ensuring decomposition whenever possible. We show analytically that RDIS can solve a broad class of nonconvex optimization problems exponentially faster than gradient descent with random restarts. Experimentally, RDIS outperforms standard techniques on problems like structure from motion and protein folding.
【Keywords】:
【Paper Link】 【Pages】:260-267
【Authors】: Thierry Petit ; Andrew C. Trapp
【Abstract】: A number of effective techniques for constraint-based optimization can be used to generate either diverse or high-quality solutions independently, but no framework is devoted to accomplish both simultaneously. In this paper, we tackle this issue with a generic paradigm that can be implemented in most existing solvers. We show that our technique can be specialized to produce diverse solutions of high quality in the context of over-constrained problems. Furthermore, our paradigm allows us to consider diversity from a different point of view, based on generic concepts expressed by global constraints.
【Keywords】:
【Paper Link】 【Pages】:268-274
【Authors】: André Abramé ; Djamal Habet
【Abstract】: At each node of the search tree, Branch and Bound solvers for Max-SAT compute the lower bound (LB) by estimating the number of disjoint inconsistent subsets (IS) of the formula. IS are detected thanks to unit propagation (UP) then transformed by max-resolution to ensure that they are counted only once. However, it has been observed experimentally that the max-resolution transformations impact the capability of UP to detect further IS. Consequently, few transformations are learned and the LB computation is redundant. In this paper, we study the effect of the transformations on the UP mechanism. We introduce the notion of UP-resiliency of a transformation, which quantifies its impact on UP. It provides, from a theoretical point of view, an explanation to the empirical efficiency of the learning scheme developed in the last ten years. The experimental results we present give evidences of UP-resiliency relevance and insights on the behavior of the learning mechanism.
【Keywords】:
【Paper Link】 【Pages】:275-282
【Authors】: Michael Abseher ; Frederico Dusberger ; Nysret Musliu ; Stefan Woltran
【Abstract】: Dynamic Programming (DP) over tree decompositions is a well-established method to solve problems — that are in general NP-hard — efficiently for instances of small treewidth. Experience shows that (i) heuristically computing a tree decomposition has negligible runtime compared to the DP step; (ii) DP algorithms exhibit a high variance in runtime when using different tree decompositions; in fact, given an instance of the problem at hand, even decompositions of the same width might yield extremely diverging runtimes. We thus propose here a novel and general method that is based on a selection of the best decomposition from an available pool of heuristically generated ones. For this purpose, we require machine learning techniques based on features of the decomposition rather than on the actual problem instance. We report on extensive experiments in different problem domains which show a significant speedup when choosing the tree decomposition according to this concept over simply using an arbitrary one of the same width.
【Keywords】:
【Paper Link】 【Pages】:283-289
【Authors】: Carlos Ansótegui ; Frédéric Didier ; Joel Gabàs
【Abstract】: We propose a new approach that exploits the good properties of core-guided and model-guided MaxSAT solvers. In particular, we show how to effectively exploit the structure of unsatisfiable cores in MaxSAT instances. Experimental results on industrial instances show that the proposed approach outperforms both complete and incomplete state-of-the-art MaxSAT solvers at the last international MaxSAT Evaluation in terms of robustness and total number of solved instances.
【Keywords】:
【Paper Link】 【Pages】:290-296
【Authors】: Amine Balafrej ; Christian Bessière ; Anastasia Paparrizou
【Abstract】: Adaptive constraint propagation has recently received a great attention. It allows a constraint solver to exploit various levels of propagation during search, and in many cases it shows better performance than static/predefined. The crucial point is to make adaptive constraint propagation automatic, so that no expert knowledge or parameter specification is required. In this work, we propose a simple learning technique, based on multi-armed bandits, that allows to automatically select among several levels of propagation during search. Our technique enables the combination of any number of levels of propagation whereas existing techniques are only defined for pairs. An experimental evaluation demonstrates that the proposed technique results in a more efficient and stable solver.
【Keywords】:
【Paper Link】 【Pages】:297-303
【Authors】: Nawal Benabbou ; Patrice Perny
【Abstract】: The aim of this paper is to propose a new approach interweaving preference elicitation and search to solve multiobjective optimization problems. We present an interactive search procedure directed by an aggregation function, possibly non-linear (e.g. an additive disutility function, a Choquet integral), defining the overall cost of solutions. This function is parameterized by weights that are initially unknown. Hence, we insert comparison queries in the search process to obtain useful preference information that will progressively reduce the uncertainty attached to weights. The process terminates by recommending a near-optimal solution ensuring that the gap to optimality is below the desired threshold. Our approach is tested on multiobjective state space search problems and appears to be quite efficient both in terms of number of queries and solution times.
【Keywords】:
【Paper Link】 【Pages】:304-310
【Authors】: Tadhg Fitzgerald ; Yuri Malitsky ; Barry O'Sullivan
【Abstract】: It is now readily accepted that automated algorithm configuration is a necessity for ensuring optimized performance of solvers on a particular problem domain. Even the best developers who have carefully designed their solver are not always able to manually find the best parameter settings for it. Yet, the opportunity for improving performance has been repeatedly demonstrated by configuration tools like ParamILS, SMAC, and GGA. However, all these techniques currently assume a static environment, where demonstrative instances are procured beforehand, potentially unlimited time is provided to adequately search the parameter space, and the solver would never need to be retrained. This is not always the case in practice. The ReACT system, proposed in 2014, demonstrated that a solver could be configured during runtime as new instances arrive in a steady stream. This paper further develops that approach and shows how a ranking scheme, like TrueSkill, can further improve the configurator's performance, making it able to quickly find good parameterizations without adding any overhead on the time needed to solve any new instance, and then continuously improve as new instances are evaluated. The enhancements to ReACT that we present enable us to even outperform existing static configurators like SMAC in a non-dynamic setting.
【Keywords】:
【Paper Link】 【Pages】:311-317
【Authors】: Pierre Genevès ; Alan Schmitt
【Abstract】: A popular technique for the analysis of web query languages relies on the translation of queries into logical formulas. These formulas are then solved for satisfiability using an off-the-shelf satisfiability solver. A critical aspect in this approach is the size of the obtained logical formula, since it constitutes a factor that affects the combined complexity of the global approach. We present logical combinators whose benefit is to provide an exponential gain in succinctness in terms of the size of the logical representation. This opens the way for solving a wide range of problems such as satisfiability and containment for expressive query languages in exponential-time, even though their direct formulation into the underlying logic results in an exponential blowup of the formula size, yielding an incorrectly presumed two-exponential time complexity. We illustrate this from a practical point of view on a few examples such as numerical occurrence constraints and tree frontier properties which are concrete problems found with semi-structured data.
【Keywords】:
【Paper Link】 【Pages】:318-324
【Authors】: Barry Hurley ; Barry O'Sullivan
【Abstract】: The last decade has seen a growing interest in solver portfolios, automated solver configuration, and runtime prediction methods. At their core, these methods rely on a deterministic, consistent behaviour from the underlying algorithms and solvers. However, modern state-of-the-art solvers have elementsof stochasticity built in such as randomised variable and value selection, tie-breaking, and randomised restarting. Such features can elicit dramatic variations in the overall performance between repeated runs of the solver,often by several orders of magnitude. Despite the success of the aforementioned fields, such performance variations in the underlying solvers have largely been ignored. Supported by a large-scale empirical study employing many years of industrial SAT Competition instances including repeated runs, we present statistical and empirical evidence that such a performance variation phenomenon necessitates a change in the evaluation of portfolio, runtime prediction, and automated configuration methods. In addition, we demonstrate that this phenomenon can have a significant impact on empirical solver competitions. Specifically, we show that the top three solvers from the 2014 SAT Competition could have been ranked in any permutation. These findings demonstrate the need for more statistically well-founded regimes in empirical evaluations.
【Keywords】:
【Paper Link】 【Pages】:325-331
【Authors】: Mikolás Janota ; Joao Marques-Silva
【Abstract】: Algorithms based on the enumeration of implicit hitting sets find a growing number of applications, which include maximum satisfiability and model based diagnosis, among others. This paper exploits enumeration of implicit hitting sets in the context of Quantified Boolean Formulas (QBF). The paper starts by developing a simple algorithm for QBF with two levels of quantification, which is shown to relate with existing work on enumeration of implicit hitting sets, but also with recent work on QBF based on abstraction refinement. The paper then extends these ideas and develops a novel QBF algorithm, which generalizes the concept of enumeration of implicit hitting sets. Experimental results, obtained on representative problem instances, show that the novel algorithm is competitive with, and often outperforms, the state of the art in QBF solving.
【Keywords】:
【Paper Link】 【Pages】:332-338
【Authors】: Frédéric Koriche ; Jean-Marie Lagniez ; Pierre Marquis ; Samuel Thomas
【Abstract】: We present and evaluate a top-down algorithm for compiling finite-domain constraint networks (CNs) into the language MDDG of multivalued decomposable decision graphs. Though it includes Decision-DNNF as a proper subset, MDDG offers the same key tractable queries and transformations as Decision-DNNF, which makes it useful for many applications. Intensive experiments showed that our compiler cn2mddg succeeds in compiling CNs which are out of the reach of standard approaches based on a translation of the input network to CNF, followed by a compilation to Decision-DNNF. Furthermore, the sizes of the resulting compiled representations turn out to be much smaller (sometimes by several orders of magnitude).
【Keywords】:
【Paper Link】 【Pages】:339-345
【Authors】: Jimmy H. M. Lee ; Zichen Zhu
【Abstract】: The generation and GAC enforcement of a large number of weak nogoods in Symmetry Breaking During Search (SBDS) is costly and often not worthwhile in terms of prunings. In this paper, we propose weak-nogood consistency (WNC) for nogoods and a lazy propagator for SBDS (and its variants) using watched literal technology. We give formal results on the strength and relatively low space and time complexities of the lazy propagator. Nogoods collected for each symmetry are increasing. We further define generalized weak-incNGs consistency (GWIC) for a conjunction of increasing nogoods, and give a lazy propagator for the incNGs global constraint. We prove GWIC on a conjunction is equivalent to WNC on individual nogoods, and give the space and time complexities. Various lazy versions of SBDS and its variants are implemented. We give experimentation to demonstrate the efficiency of the lazy versions as compared to state of the art symmetry breaking methods.
【Keywords】:
【Paper Link】 【Pages】:346-352
【Authors】: Kevin Leo ; Guido Tack
【Abstract】: Presolving is a preprocessing step performed by optimisation solvers to improve performance. However, these solvers cannot easily exploit high-level model structure as available in modelling languages such as MiniZinc or Essence. We present an integrated approach that performs presolving as a separate pass during the compilation from high-level optimisation models to solver-level programs. The compiler produces a representation of the model that is suitable for presolving by retaining some of the high-level structure. It then uses information learned during presolving to generate the final solver-level representation. Our approach introduces the novel concept of variable paths that identify variables which are common across multiple compilation passes, increasing the amount of shared information. We show that this approach can lead to both faster compilation and more efficient solver-level programs.
【Keywords】:
【Paper Link】 【Pages】:353-359
【Authors】: Chavalit Likitvivatanavong ; Wei Xia ; Roland H. C. Yap
【Abstract】: Generalized arc consistency (GAC) is one of the most fundamental properties for reducing the search space when solving constraint satisfaction problems (CSPs). Consistencies stronger than GAC have also been shown useful, but the challenge is to develop efficient and simple filtering algorithms. Several CSP transformations are proposed recently so that the GAC algorithms can be applied on the transformedCSP to enforce stronger consistencies. Among them, the factor encoding (FE) is shown to be promising with respect to recent higher-order consistency algorithms. Nonetheless, one potential drawback of the FE is the fact that it enlarges the table relations as it increases constraint arity. We propose a variation of the FE that aims at reducing redundant columns in the constraints of the FE while still preserving full pairwise consistency. Experiments show that the new approach is competitive over a variety of random and structured benchmarks.
【Keywords】:
【Paper Link】 【Pages】:360-366
【Authors】: Christopher Mears ; Maria Garcia de la Banda
【Abstract】: The exploitation of dominance relations in constraint optimization problems can lead to dramatic reductions in search space. We propose an automatic method to detect some of the dominance relations manually identified by Chu and Stuckey for optimization problems, and to construct the associated dominance breaking constraints. Experimental results show that the method is able to find several dominance relations and to generate effective dominance breaking constraints.
【Keywords】:
【Paper Link】 【Pages】:367-373
【Authors】: Zongxu Mu ; Holger H. Hoos
【Abstract】: The time complexity of problems and algorithms, i.e., the scaling of the time required for solving a problem instance as a function of instance size, is of key interest in theoretical computer science and practical applications. In this context, propositional satisfiability (SAT) is one of the most intensely studied problems, and it is generally believed that solving SAT requires exponential time in the worst case. For more than two decades, random 3-SAT at the solubility phase transition has played a pivotal role in the theoretical and empirical investigation of SAT solving, and to this day, it is arguably the most prominent model for difficult SAT instances. Here, we study the empirical scaling of the running time of several prominent, high-performance SAT solvers on random 3-SAT instances from the phase transition region. After introducing a refined model for the location of the phase transition point, we show that the median running time of three incomplete, SLS-based solvers — WalkSAT/SKC, BalancedZ and probSAT — scales polynomially with instance size. An analogous analysis of three complete, DPLL-based solvers — kcnfs, march_hi and march_br — clearly indicates exponential scaling of median running time. Moreover, exponential scaling is witnessed for these DPLL-based solvers when solving only satisfiable and only unsatisfiable instances, and the respective scaling models for each solver differ mostly by a constant factor.
【Keywords】:
【Paper Link】 【Pages】:374-380
【Authors】: Guillaume Perez ; Jean-Charles Régin
【Abstract】: We propose improved algorithms for defining the most common operations on Multi-Valued Decision Diagrams (MDDs): creation, reduction, complement, intersection, union, difference, symmetric difference, complement of union and complement of intersection. Then, we show that with these algorithms and thanks to the recent development of an efficient algorithm establishing arc consistency for MDD based constraints (MDD4R), we can simply solve some problems by modeling them as a set of operations between MDDs. We apply our approach to the regular constraint and obtain competitive results with dedicated algorithms. We also experiment our technique on a large scale problem: the phrase generation problem and we show that our approach gives equivalent results to those of a specific algorithm computing a complex automaton.
【Keywords】:
【Paper Link】 【Pages】:381-388
【Authors】: Oleksandr Polozov ; Eleanor O'Rourke ; Adam M. Smith ; Luke Zettlemoyer ; Sumit Gulwani ; Zoran Popovic
【Abstract】: Word problems are an established technique for teaching mathematical modeling skills in K-12 education. However, many students find word problems unconnected to their lives, artificial, and uninteresting. Most students find them much more difficult than the corresponding symbolic representations. To account for this phenomenon, an ideal pedagogy might involve an individually crafted progression of unique word problems that form a personalized plot. We propose a novel technique for automatic generation of personalized word problems. In our system, word problems are generated from general specifications using answer-set programming (ASP). The specifications include tutor requirements (properties of a mathematical model), and student requirements (personalization, characters, setting). Our system takes a logical encoding of the specification, synthesizes a word problem narrative and its mathematical model as a labeled logical plot graph, and realizes the problem in natural language. Human judges found our problems as solvable as the textbook problems, with a slightly more artificial language.
【Keywords】:
【Paper Link】 【Pages】:389-395
【Authors】: Chao Qian ; Yang Yu ; Zhi-Hua Zhou
【Abstract】: Pareto optimization solves a constrained optimization task by reformulating the task as a bi-objective problem. Pareto optimization has been shown quite effective in applications; however, it has little theoretical support. This work theoretically compares Pareto optimization with a penalty approach, which is a common method transforming a constrained optimization into an unconstrained optimization. We prove that on two large classes of constrained Boolean optimization problems, minimum matroid optimization (P-solvable) and minimum cost coverage (NP-hard), Pareto optimization is more efficient than the penalty function method for obtaining the optimal and approximate solutions, respectively. Furthermore, on a minimum cost coverage instance, we also show the advantage of Pareto optimization over a greedy algorithm.
【Keywords】:
【Paper Link】 【Pages】:396-402
【Authors】: Ignacio Antonio Salas Donoso ; Gilles Chabert
【Abstract】: This paper deals with the problem of packing two-dimensional objects of quite arbitrary shapes including in particular curved shapes (like ellipses) and assemblies of them. This problem arises in industry for the packaging and transport of bulky objects which are not individually packed into boxes, like car spare parts. There has been considerable work on packing curved objects but, most of the time, with specific shapes; one famous example being the circle packing problem. There is much less algorithm for the general case where different shapes can be mixed together. A successful approach has been proposed recently in Martinez et al. (T. Martinez, L. Vitorino, F. Fages, and A. Aggoun. On Solving Mixed Shapes Packing Problems by Continuous Optimization with the CMA Evolution Strategy. In Proceedings of the first BRICS countries congress on Computational Intelligence, 2013) and the algorithm we propose here is an extension of their work. Martinez et al. use a stochastic optimization algorithm with a fitness function that gives a violation cost and equals zero when objects are all packed. Their main idea is to define this function as a sum of n!/(2!(n-2)!) elementary functions that measure the overlapping between each pair of different objects. However, these functions are ad-hoc formulas. Designing ad-hoc formulas for every possible combination of object shapes can be a very tedious task, which dramatically limits the applicability of their approach. The aim of this paper is to generalize the approach by replacing the ad-hoc formulas with a numerical algorithm that automatically measures the overlapping between two objects. Then, we come up with a fully black-box packing algorithm that accept any kind of objects.
【Keywords】:
【Paper Link】 【Pages】:403-410
【Authors】: Long Tran-Thanh ; Yingce Xia ; Tao Qin ; Nicholas R. Jennings
【Abstract】: We study the stochastic multiple-choice knapsack problem, where a set of Kitems, whose value and weight are random variables, arrive to the system at each time step, and a decision maker has to choose at most one item to put into the knapsack without exceeding its capacity. The goal is the decision-maker is to maximise the total expected value of chosen items with respect to the knapsack capacity and a finite time horizon.We provide the first comprehensive theoretical analysis of the problem. In particular, we propose OPT-S-MCKP, the first algorithm that achieves optimality when the value-weight distributions are known. This algorithm also enjoys O(√{T}) performance loss, where T is the finite time horizon, in the unknown value-weight distributions scenario.We also further develop two novel approximation methods, FR-S-MCKP and G-S-MCKP, and we prove that FR-S-MCKP achieves O(√{T}) performance loss in both known and unknown value-weight distributions cases, while enjoying polynomial computational complexity per time step. On the other hand, G-S-MCKP does not have theoretical guarantees, but it still provides good performance in practice with linear running time.
【Keywords】:
【Paper Link】 【Pages】:411-417
【Authors】: Supriyo Ghosh ; Akshat Kumar ; Pradeep Varakantham
【Abstract】: Distributed constraint optimization (DCOP) is an important framework for coordinated multiagent decision making. We address a practically useful variant of DCOP, called resource-constrained DCOP (RC-DCOP), which takes into account agents' consumption of shared limited resources. We present a promising new class of algorithm for RC-DCOPs by translating the underlying coordination problem to probabilistic inference. Using inference techniques such as expectation-maximization and convex optimization machinery, we develop a novel convergent message-passing algorithm for RC-DCOPs. Experiments on standard benchmarks show that our approach provides better quality than previous best DCOP algorithms and has much lower failure rate. Comparisons against an efficient centralized solver show that our approach provides near-optimal solutions, and is significantly faster on larger instances.
【Keywords】:
【Paper Link】 【Pages】:418-424
【Authors】: Minh Luan Nguyen ; Siu Cheung Hui ; Alvis Cheuk Ming Fong
【Abstract】: Parallel Test Paper Generation (k-TPG) is a biobjective distributed resource allocation problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified criteria.Generating high-quality parallel test papers is challenging due to its NP-hardness in maximizing the collective objective functions.In this paper, we propose a Collective Biobjective Optimization (CBO) algorithm for solving k-TPG. CBO is a multi-step greedy-based approximation algorithm, which exploits the submodular property for biobjective optimization of k-TPG.Experiment results have shown that CBO has drastically outperformed the current techniques in terms of paper quality and runtime efficiency.
【Keywords】:
【Paper Link】 【Pages】:425-431
【Authors】: Tamir Tassa ; Roie Zivan ; Tal Grinshpoun
【Abstract】: As part of the ongoing effort of designing secure DCOP algorithms, we propose P-Max-Sum, the first private algorithm that is based on Max-Sum. The proposed algorithm has multiple agents preforming the role of each node in the factor graph, on which the Max-Sum algorithm operates. P-Max-Sum preserves three types of privacy: topology privacy, constraint privacy, and assignment/decision privacy.By allowing a single call to a trusted coordinator, P-Max-Sum also preserves agent privacy. The two main cryptographic means that enable this privacy preservation are secret sharing and homomorphic encryption. Our experiments on structured and realistic problems show that the overhead of privacy preservation in terms of runtime is reasonable.
【Keywords】:
【Paper Link】 【Pages】:432-439
【Authors】: Roie Zivan ; Tomer Parash ; Yarden Naveh
【Abstract】: We study the adjustment and use of the Max-sumalgorithm for solving Asymmetric Distributed ConstraintOptimization Problems (ADCOPs). First, we formalize asymmetric factor-graphs and apply the different versions of Max-sum to them. Apparently, in contrast to local search algorithms, most Max-sum versions perform similarly when solving symmetric and asymmetric problems and some even perform better on asymmetric problems. Second, we prove that the convergence properties of Max-sum ADVP (an algorithm that was previously found to outperform other Max-sum versions) and the quality of the solutions it produces are dependent on the order between nodes involved in each constraint, i.e., the inner constraint order (ICO). A standard ICO allows to reproduce the properties achieved for symmetric problems, and outperform previously proposed local search ADCOP algorithms. Third, we demonstrate that a non-standard ICO can be used to balance exploration and exploitation, resulting in the best performing Max-sum version on both symmetric and asymmetric standard benchmarks.
【Keywords】:
【Paper Link】 【Pages】:440-446
【Authors】: Andrés Abeliuk ; Gerardo Berbeglia ; Pascal Van Hentenryck
【Abstract】: We introduce one-way games, a framework motivated by applications in large-scale power restoration, humanitarian logistics, and integrated supply-chains. The distinguishable feature of the games is that the payoff of some player is determined only by her own strategy and does not depend on actions taken by other players. We show that the equilibrium outcome in one-way games without payments and the social cost of any ex-post efficient mechanism, can be far from the optimum. We also show that it is impossible to design a Bayes-Nash incentive-compatible mechanism for one-way games that is budget-balanced, individually rational, and efficient. Finally, we propose a privacy-preserving mechanism that is incentive-compatible and budget-balanced, satisfies ex-post individual rationality conditions, and produces an outcome which is more efficient than the equilibrium without payments.
【Keywords】:
【Paper Link】 【Pages】:447-453
【Authors】: Elliot Anshelevich ; Onkar Bhardwaj ; Koushik Kar
【Abstract】: Settings in which independent self-interested agents form connections with each other are extremely common, and are usually modeled using network formation games. We study a natural extension of network formation games in which the nodes cannot form connections themselves, but instead must do it through an intermediary, and must pay the intermediary to form these connections. The price charged by the intermediary is assumed to be determined by its operating costs, which in turn depend on the total amount of connections it facilitates. We investigate the existence and worst-case efficiency (price of anarchy) of stable solutions in these settings, and especially when the intermediary uses common pricing schemes like proportional pricing or marginal cost pricing. For both these pricing schemes we prove existence of stable solutions and completely characterize their structure, as well as generalize these results to a large class of pricing schemes. Our main results are on bounding the price of anarchy in such settings: we show that while marginal cost pricing leads to an upper bound of only 2, i.e., stable solutions are always close to optimal, proportional pricing also performs reasonably well as long as the operating costs of the intermediary are not too convex.
【Keywords】:
【Paper Link】 【Pages】:454-460
【Authors】: Haris Aziz ; Simina Brânzei ; Aris Filos-Ratsikas ; Søren Kristoffer Stiil Frederiksen
【Abstract】: The Adjusted Winner procedure is an important mechanism proposed by Brams and Taylor for fairly allocating goods between two agents. It has been used in practice for divorce settlements and analyzing political disputes. Assuming truthful declaration of the valuations, it computes an allocation that is envy-free, equitable and Pareto optimal. We show that Adjusted Winner admits several elegant characterizations, which further shed light on the outcomes reached with strategic agents. We find that the procedure may not admit pure Nash equilibria in either the discrete or continuous variants, but is guaranteed to have ε-Nash equilibria for each ε > 0. Moreover, under informed tie-breaking, exact pure Nash equilibria always exist, are Pareto optimal, and their social welfare is at least 3/4 of the optimal.
【Keywords】:
【Paper Link】 【Pages】:461-467
【Authors】: Haris Aziz ; Serge Gaspers ; Joachim Gudmundsson ; Julián Mestre ; Hanjo Täubig
【Abstract】: We consider the computational complexity of computing welfare maximizing partitions for fractional hedonic games — a natural class of coalition formation games that can be succinctly represented by a graph. For such games, welfare maximizing partitions constitute desirable ways to cluster the vertices of the graph. We present both intractability results and approximation algorithms for computing welfare maximizing partitions.
【Keywords】:
【Paper Link】 【Pages】:468-474
【Authors】: Haris Aziz ; Toby Walsh ; Lirong Xia
【Abstract】: A simple mechanism for allocating indivisible resources is sequential allocation in which agents take turns to pick items. We focus on possible and necessary allocation problems, checking whether allocations of a given form occur in some or all mechanisms for several commonly used classes of sequential allocation mechanisms. In particular, we consider whether a given agent receives a given item, a set of items, or a subset of items for natural classes of sequential allocation mechanisms: balanced, recursively balanced, balanced alternation, and strict alternation. We present characterizations of the allocations that result respectively from the classes, which extend the well-known characterization by Brams and King [2005] for policies without restrictions. In addition, we examine the computational complexity of possible and necessary allocation problems for these classes.
【Keywords】:
【Paper Link】 【Pages】:475-481
【Authors】: Maria-Florina Balcan ; Ariel D. Procaccia ; Yair Zick
【Abstract】: This paper explores a PAC (probably approximately correct) learning model in cooperative games. Specifically, we are given m random samples of coalitions and their values, taken from some unknown cooperative game; can we predict the values of unseen coalitions? We study the PAC learnability of several well-known classes of cooperative games, such as network flow games, threshold task games, and induced subgraph games. We also establish a novel connection between PAC learnability and core stability: for games that are efficiently learnable, it is possible to find payoff divisions that are likely to be stable using a polynomial number of samples.
【Keywords】:
【Paper Link】 【Pages】:482-488
【Authors】: Simina Brânzei ; Peter Bro Miltersen
【Abstract】: We consider discrete protocols for the classical Steinhaus cake cutting problem. Under mild technical conditions, we show that any deterministic strategy-proof protocol for two agents in the standard Robertson-Webb query model is dictatorial, that is, there is a fixed agent to which the protocol allocates the entire cake. For n > 2 agents, a similar impossibility holds, namely there always exists an agent that gets the empty piece (i.e. no cake). In contrast, we exhibit randomized protocols that are truthful in expectation and compute approximately fair allocations.
【Keywords】:
【Paper Link】 【Pages】:489-496
【Authors】: Noam Brown ; Tuomas Sandholm
【Abstract】: A key challenge in solving extensive-form games is dealing with large, or even infinite, action spaces. In games of imperfect information, the leading approach is to find a Nash equilibrium in a smaller abstract version of the game that includes only a few actions at each decision point, and then map the solution back to the original game. However, it is difficult to know which actions should be included in the abstraction without first solving the game, and it is infeasible to solve the game without first abstracting it. We introduce a method that combines abstraction with equilibrium finding by enabling actions to be added to the abstraction at run time. This allows an agent to begin learning with a coarse abstraction, and then to strategically insert actions at points that the strategy computed in the current abstraction deems important. The algorithm can quickly add actions to the abstraction while provably not having to restart the equilibrium finding. It enables anytime convergence to a Nash equilibrium of the full game even in infinite games. Experiments show it can outperform fixed abstractions at every stage of the run: early on it improves as quickly as equilibrium finding in coarse abstractions, and later it converges to a better solution than does equilibrium finding in fine-grained abstractions.
【Keywords】:
【Paper Link】 【Pages】:497-503
【Authors】: Alejandro Uriel Carbonara ; Anupam Datta ; Arunesh Sinha ; Yair Zick
【Abstract】: In Massively Open Online Courses (MOOCs) TA resources are limited; most MOOCs use peer assessments to grade assignments. Students have to divide up their time between working on their own homework and grading others. If there is no risk of being caught and penalized, students have no reason to spend any time grading others Course staff want to incentivize students to balance their time between course work and peer grading. They may do so by auditing students, ensuring that they perform grading correctly. One would not want students to invest too much time on peer grading, as this would result in poor course performance. We present the first model of strategic auditing in peer grading, modeling the student's choice of effort in response to a grader's audit levels as a Stackelberg game with multiple followers. We demonstrate that computing the equilibrium for this game is computationally hard. We then provide a PTAS in order to compute an approximate solution to the problem of allocating audit levels. However, we show that this allocation does not necessarily maximize social welfare; in fact, there exist settings where course auditor utility is arbitrarily far from optimal under an approximately optimal allocation. To circumvent this issue, we present a natural condition that guarantees that approximately optimal TA allocations guarantee approximately optimal welfare for the course auditors.
【Keywords】:
【Paper Link】 【Pages】:504-510
【Authors】: Artur Czumaj ; Michail Fasoulakis ; Marcin Jurdzinski
【Abstract】: It is known that Nash equilibria and approximate Nash equilibria not necessarily optimize social optima of bimatrix games. In this paper, we show that for every fixed ε > 0, every bimatrix game (with values in [0, 1]) has an ε-approximate Nash equilibrium with the total payoff of the players at least a constant factor, (1 − √1 − ε)2, of the optimum. Furthermore, our result can be made algorithmic in the following sense: for every fixed 0 ≤ ε < ε, if we can find an ε-approximate Nash equilibrium in polynomial time, then we can find in polynomial time an ε-approximate Nash equilibrium with the total payoff of the players at least a constant factor of the optimum. Our analysis is especially tight in the case when ε ≥ 1/2. In this case, we show that for any bimatrix game there is an ε-approximate Nash equilibrium with constant size support whose social welfare is is at least 2√ε − ε ≥ 0.914 times the optimal social welfare. Furthermore, we demonstrate that our bound for the social welfare is tight, that is, for every ε ≥ 1/2 there is a bimatrix game for which every ε-approximate Nash equilibrium has social welfare at most 2√ε − ε times the optimal social welfare.
【Keywords】:
【Paper Link】 【Pages】:511-517
【Authors】: Amit Datta ; Anupam Datta ; Ariel D. Procaccia ; Yair Zick
【Abstract】: A dataset has been classified by some unknown classifier into two types of points. What were the most important factors in determining the classification outcome? In this work, we employ an axiomatic approach in order to uniquely characterize an influence measure: a function that, given a set of classified points, outputs a value for each feature corresponding to its influence in determining the classification outcome. We show that our influence measure takes on an intuitive form when the unknown classifier is linear. Finally, we employ our influence measure in order to analyze the effects of user profiling on Google's online display advertising.
【Keywords】:
【Paper Link】 【Pages】:518-525
【Authors】: Joanna Drummond ; Andrew Perrault ; Fahiem Bacchus
【Abstract】: Stable matchings can be computed by deferred acceptance (DA) algorithms. However such algorithms become incomplete when complementarities exist among the agent preferences: they can fail to find a stable matching even when one exists. In this paper we examine stable matching problems arising from labour market with couples (SMP-C). The classical problem of matching residents into hospital programs is an example. Couples introduce complementarities under which DA algorithms become incomplete. In fact, SMP-C is NP-complete. Inspired by advances in SAT and integer programming (IP) solvers we investigate encoding SMP-C into SAT and IP and then using state-of-the-art SAT and IP solvers to solve it. We also implemented two previous DA algorithms. After comparing the performance of these different solution methods we find that encoding to SAT can be surprisingly effective, but that our encoding to IP does not scale as well. Using our SAT encoding we are able to determine that the DA algorithms fail on a non-trivial number of cases where a stable matching exists. The SAT and IP encodings also have the property that they can verify that no stable matching exists, something that the DA algorithms cannot do.
【Keywords】:
【Paper Link】 【Pages】:526-532
【Authors】: Karel Durkota ; Viliam Lisý ; Branislav Bosanský ; Christopher Kiekintveld
【Abstract】: Preventing attacks in a computer network is the core problem in network security. We introduce a new game-theoretic model of the interaction between a network administrator who uses limited resource to harden a network and an attacker who follows a multi-stage plan to attack the network. The possible plans of the attacker are compactly represented using attack graphs, while the defender adds fake targets (honeypots) to the network to deceive the attacker. The compact representation of the attacker's strategies presents a computational challenge and finding the best response of the attacker is NP-hard. We present a solution method that first translates an attack graph into an MDP and solves it using policy search with a set of pruning techniques. We present an empirical evaluation of the model and solution algorithms, evaluating scalability, the types of solutions that are generated for realistic cases, and sensitivity analysis.
【Keywords】:
【Paper Link】 【Pages】:533-539
【Authors】: Edith Elkind ; Umberto Grandi ; Francesca Rossi ; Arkadii Slinko
【Abstract】: The Gibbard-Satterthwaite theorem implies the ubiquity of manipulators — voters who could change the election outcome in their favor by unilaterally modifying their vote. In this paper, we ask what happens if a given profile admits several such voters. We model strategic interactions among Gibbard–Satterthwaite manipulators as a normal-form game. We classify the 2-by-2 games that can arise in this setting for two simple voting rules, namely Plurality and Borda, and study the complexity of determining whether a given manipulative vote weakly dominates truth-telling, as well as existence of Nash equilibria.
【Keywords】:
【Paper Link】 【Pages】:540-546
【Authors】: Umberto Grandi ; Davide Grossi ; Paolo Turrini
【Abstract】: We study voting games on binary issues, where voters might hold an objective over some issues at stake, while willing to strike deals on the remaining ones, and can influence one another's voting decision before the vote takes place. We analyse voters' rational behaviour in the resulting two-phase game, showing under what conditions undesirable equilibria can be removed as an effect of the pre-vote phase.
【Keywords】:
【Paper Link】 【Pages】:547-553
【Authors】: Gianluigi Greco ; Francesco Lupia ; Francesco Scarcello
【Abstract】: Allocation games are coalitional games defined in the literature as a way to analyze fair division problems of indivisible goods. The prototypical solution concepts for them are the Shapley value and the Banzhaf value. Unfortunately, their computation is intractable, formally #P-hard. Motivated by this bad news, structural requirements are investigated which can be used to identify islands of tractability. The main result is that, over the class of allocation games, the Shapley value and the Banzhaf value can be computed in polynomial time when interactions among agents can be formalized as graphs of bounded treewidth. This is shown by means of technical tools that are of interest in their own and that can be used for analyzing different kinds of coalitional games. Tractability is also shown for games where each good can be assigned to at most two agents, independently of their interactions.
【Keywords】:
【Paper Link】 【Pages】:554-560
【Authors】: Johannes Heinrich ; David Silver
【Abstract】: Self-play Monte Carlo Tree Search (MCTS) has been successful in many perfect-information two-player games. Although these methods have been extended to imperfect-information games, so far they have not achieved the same level of practical success or theoretical convergence guarantees as competing methods. In this paper we introduce Smooth UCT, a variant of the established Upper Confidence Bounds Applied to Trees (UCT) algorithm. Smooth UCT agents mix in their average policy during self-play and the resulting planning process resembles game-theoretic fictitious play. When applied to Kuhn and Leduc poker, Smooth UCT approached a Nash equilibrium, whereas UCT diverged. In addition, Smooth UCT outperformed UCT in Limit Texas Hold'em and won 3 silver medals in the 2014 Annual Computer Poker Competition.
【Keywords】:
【Paper Link】 【Pages】:561-567
【Authors】: Michael P. Kim ; Virginia Vassilevska Williams
【Abstract】: We study the tournament fixing problem (TFP), which asks whether a tournament organizer can rig a single-elimination (SE) tournament such that their favorite player wins, simply by adjusting the initial seeding. Prior results give two perspectives of TFP: on the one hand, deciding whether an arbitrary player can win any SE tournament is known to be NP-complete; on the other hand, there are a number of known conditions, under which a player is guaranteed to win some SE tournament. We extend and connect both these lines of work. We show that for a number of structured variants of the problem, where our player is seemingly strong, deciding whether the player can win any tournament is still NP-complete. Dual to this hardness result, we characterize a new set of sufficient conditions for a player to win a tournament. Further, we give an improved exact algorithm for deciding whether a player can win a tournament.
【Keywords】:
【Paper Link】 【Pages】:568-574
【Authors】: Annamária Kovács ; Angelina Vidali
【Abstract】: Our work deals with the important problem of globally characterizing truthful mechanisms where players have multi-parameter, additive valuations, like scheduling unrelated machines or additive combinatorial auctions. Very few mechanisms are known for these settings and the question is: Can we prove that no other truthful mechanisms exist? We characterize truthful mechanisms for n players and 2 tasks or items, as either task-independent, or a player-grouping minimizer, a new class of mechanisms we discover, which generalizes affine minimizers. We assume decisiveness, strong monotonicity and that the truthful payments (The (normalized) payments are uniquely determined by the allocation function of the mechanism; thus the assumptions concern properties of the allocation.) are continuous functions of players' bids.
【Keywords】:
【Paper Link】 【Pages】:575-581
【Authors】: Christian Kroer ; Tuomas Sandholm
【Abstract】: Limited lookahead has been studied for decades in perfect-information games. This paper initiates a new direction via two simultaneous deviation points: generalization to imperfect-information games and a game-theoretic approach. The question of how one should act when facing an opponent whose lookahead is limited is studied along multiple axes: lookahead depth, whether the opponent(s), too, have imperfect information, and how they break ties. We characterize the hardness of finding a Nash equilibrium or an optimal commitment strategy for either player, showing that in some of these variations the problem can be solved in polynomial time while in others it is PPAD-hard or NP-hard. We proceed to design algorithms for computing optimal commitment strategies for when the opponent breaks ties 1) favorably, 2) according to a fixed rule, or 3) adversarially. The impact of limited lookahead is then investigated experimentally. The limited-lookahead player often obtains the value of the game if she knows the expected values of nodes in the game tree for some equilibrium, but we prove this is not sufficient in general. Finally, we study the impact of noise in those estimates and different lookahead depths. This uncovers a lookahead pathology.
【Keywords】:
【Paper Link】 【Pages】:582-588
【Authors】: David Kurokawa ; Omer Lev ; Jamie Morgenstern ; Ariel D. Procaccia
【Abstract】: Motivated by a radically new peer review system that the National Science Foundation recently experimented with, we study peer review systems in which proposals are reviewed by PIs who have submitted proposals themselves. An (m, k)-selection mechanism asks each PI to review m proposals, and uses these reviews to select (at most) k proposals. We are interested in impartial mechanisms, which guarantee that the ratings given by a PI to others' proposals do not affect the likelihood of the PI's own proposal being selected. We design an impartial mechanism that selects a k-subset of proposals that is nearly as highly rated as the one selected by the non-impartial (abstract version of) the NSF pilot mechanism, even when the latter mechanism has the "unfair" advantage of eliciting honest reviews.
【Keywords】:
【Paper Link】 【Pages】:589-595
【Authors】: Minming Li ; Jialin Zhang ; Qiang Zhang
【Abstract】: We study truthful mechanisms in the context of cake cutting when agents not only value their own pieces of cake but also care for the pieces assigned to other agents. In particular, agents derive benefits or costs from the pieces of cake assigned to other agents. This phenomenon is often referred to as positive or negative externalities. We propose and study the following model: given an allocation, externalities of agents are modeled as percentages of the reported values that other agents have for their pieces. We show that even in this restricted class of externalities, under some natural assumptions, no truthful cake cutting mechanisms exist when externalities are either positive or negative. However, when the percentages agents get from each other are small, we show that there exists a truthful cake cutting mechanism with other desired properties.
【Keywords】:
【Paper Link】 【Pages】:596-602
【Authors】: Jian Lou ; Yevgeniy Vorobeychik
【Abstract】: Stackelberg game models of security have received much attention, with a number of approaches for computing Stackelberg equilibria in games with a single defender protecting a collection of targets. In contrast, multi-defender security games have received significantly less attention, particularly when each defender protects more than a single target. We fill this gap by considering a multidefender security game, with a focus on theoretical characterizations of equilibria and the price of anarchy. We present the analysis of three models of increasing generality, two in which each defender protects multiple targets. In all models, we find that the defenders often have the incentive to overprotect the targets, at times significantly. Additionally, in the simpler models, we find that the price of anarchy is unbounded, linearly increasing both in the number of defenders and the number of targets per defender. Surprisingly, when we consider a more general model, this results obtains only in a “corner” case in the space of parameters; in most cases, however, the price of anarchy converges to a constant when the number of defenders increases.
【Keywords】:
【Paper Link】 【Pages】:603-609
【Authors】: Matthias Mnich ; Yash Raj Shrestha ; Yongjie Yang
【Abstract】: In 1990, Thomas Schwartz proposed the conjecture that every nonempty tournament has a unique minimal TEQ-retentive set (TEQ stands for tournament equilibrium set). A weak variant of Schwartz's Conjecture was recently proposed by Felix Brandt. However, both conjectures were disproved very recently by two counterexamples. In this paper, we prove sufficient conditions for infinite classes of tournaments that satisfy Schwartz's Conjecture and Brandt's Conjecture. Moreover, we prove that TEQ can be calculated in polynomial time in several infinite classes of tournaments. Furthermore, our results reveal some structures that are forbidden in every counterexample to Schwartz's Conjecture.
【Keywords】:
【Paper Link】 【Pages】:610-616
【Authors】: Svetlana Obraztsova ; Edith Elkind ; Maria Polukarov ; Zinovi Rabinovich
【Abstract】: In strategic candidacy games, both voters and candidates have preferences over the set of candidates, and candidates may strategically withdraw from the election in order to manipulate the outcome according to their preferences. In this work, we extend the standard model of strategic candidacy games by observing that candidates may find it costly to run an electoral campaign and may therefore prefer to withdraw if their presence has no effect on the election outcome. We study the Nash equilibria and outcomes of natural best-response dynamics in the resulting class of games, both from a normative and from a computational perspective, and compare them with the Nash equilibria of the standard model.
【Keywords】:
【Paper Link】 【Pages】:617-623
【Authors】: Dominik Peters ; Edith Elkind
【Abstract】: Hedonic games provide a natural model of coalition formation among self-interested agents. The associated problem of finding stable outcomes in such games has been extensively studied. In this paper, we identify simple conditions on expressivity of hedonic games that are sufficient for the problem of checking whether a given game admits a stable outcome to be computationally hard. Somewhat surprisingly, these conditions are very mild and intuitive. Our results apply to a wide range of stability concepts (core stability, individual stability, Nash stability, etc.) and to many known formalisms for hedonic games (additively separable games, games with W-preferences, fractional hedonic games, etc.), and unify and extend known results for these formalisms. They also have broader applicability: for several classes of hedonic games whose computational complexity has not been explored in prior work, we show that our framework immediately implies a number of hardness results for them.
【Keywords】:
【Paper Link】 【Pages】:624-630
【Authors】: Maria Polukarov ; Svetlana Obraztsova ; Zinovi Rabinovich ; Alexander Kruglyi ; Nicholas R. Jennings
【Abstract】: We study equilibrium dynamics in candidacy games, in which candidates may strategically decide to enter the election or withdraw their candidacy, following their own preferences over possible outcomes. Focusing on games under Plurality, we extend the standard model to allow for situations where voters may refuse to return their votes to those candidates who had previously left the election, should they decide to run again. We show that if at the time when a candidate withdraws his candidacy, with some positive probability each voter takes this candidate out of his future consideration, the process converges with probability 1. This is in sharp contrast with the original model where the very existence of a Nash equilibrium is not guaranteed. We then consider the two extreme cases of this setting, where voters may block a withdrawn candidate with probabilities 0 or 1. In these scenarios, we study the complexity of reaching equilibria from a given initial point, converging to an equilibrium with a predermined winner or to an equilibrium with a given set of running candidates. Except for one easy case, we show that these problems are NP-complete, even when the initial point is fixed to a natural — truthful — state where all potential candidates stand for election.
【Keywords】:
【Paper Link】 【Pages】:631-637
【Authors】: Oskar Skibski ; Tomasz P. Michalak ; Yuko Sakurai ; Makoto Yokoo
【Abstract】: Weighted voting games allow for studying the distribution of power between agents in situations of collective decision making. While the conventional version of these games assumes that any agent is always ready to cooperate with all others, recently, more involved models have been proposed, where cooperation is subject to restrictions. Following Myerson [1977], such restrictions are typically represented by a graph that expresses available communication links among agents. In this paper, we study the time complexity of computing two well-known power indices — the Shapley-Shubik index and the Banzhaf index - in the graph-restricted weighted voting games. We show that both are #P-complete and propose a dedicated dynamic-programming algorithm that runs in pseudo-polynomial time for graphs with the bounded treewidth.
【Keywords】:
【Paper Link】 【Pages】:638-644
【Authors】: Piotr Lech Szczepanski ; Aleksy Stanislaw Barcz ; Tomasz Pawel Michalak ; Talal Rahwan
【Abstract】: Measuring similarity between nodes has been an issue of extensive research in the social network analysis literature. In this paper, we construct anew measure of similarity between nodes based on the game-theoretic interaction index (Grabisch and Roubens, 1997). Despite the fact that, in general, this index is computationally challenging, we show that in our network application it can be computed in polynomial time. We test our measure on two important problems, namely link prediction and community detection, given several real-life networks. We show that, for the majority of those networks, our measure outperforms other local similarity measures from the literature.
【Keywords】:
【Paper Link】 【Pages】:645-652
【Authors】: Oskari Tammelin ; Neil Burch ; Michael Johanson ; Michael Bowling
【Abstract】: Cepheus is the first computer program to essentially solve a game of imperfect information that is played competitively by humans. The game it plays is heads-up limit Texas hold'em poker, a game with over 10^14 information sets, and a challenge problem for artificial intelligence for over 10 years. Cepheus was trained using a new variant of Counterfactual Regret Minimization (CFR), called CFR+, using 4800 CPUs running for 68 days. In this paper we describe in detail the engineering details required to make this computation a reality. We also prove the theoretical soundness of CFR+ and its component algorithm, regret-matching+. We further give a hint towards understanding the success of CFR+ by proving a tracking regret bound for this new regret matching algorithm. We present results showing the role of the algorithmic components and the engineering choices to the success of CFR+.
【Keywords】:
【Paper Link】 【Pages】:653-659
【Authors】: Bo Tang ; Jinshan Zhang
【Abstract】: We study the problem of designing envy-free sponsored search auctions, where bidders are budget-constrained. Our primary goal is to design auctions that maximize social welfare and revenue — two classical objectives in auction theory. For this purpose, we characterize envy-freeness with budgets by proving several elementary properties including consistency, monotonicity and transitivity. Based on this characterization, we come up with an envy-free auction, that is both social-optimal and bidder-optimal for a wide class of bidder types. More generally, for all bidder types, we provide two polynomial time approximation schemes (PTASs) for maximizing social welfare or revenue, where the notion of envy-freeness has been relaxed slightly. Finally, in cases where randomization is allowed in designing auctions, we devise similar PTASs for social welfare or revenue maximization problems.
【Keywords】:
【Paper Link】 【Pages】:660-666
【Authors】: Shoshana Vasserman ; Michal Feldman ; Avinatan Hassidim
【Abstract】: We study a setting of non-atomic routing in a network of m parallel links with asymmetry of information. While a central entity (such as a GPS navigation system) — a mediator hereafter — knows the cost functions associated with the links, they are unknown to the individual agents controlling the flow. The mediator gives incentive compatible recommendations to agents, trying to minimize the total travel time. Can the mediator do better than when agents minimize their travel time selfishly without coercing agents to follow his recommendations? We study the mediation ratio: the ratio between the mediated equilibrium obtained from an incentive compatible mediation protocol and the social optimum. We find that mediation protocols can reduce the efficiency loss compared to the full revelation alternative, and compared to the non mediated Nash equilibrium. In particular, in the case of two links with affine cost functions, the mediation ratio is at most 8/7, and remains strictly smaller than the price of anarchy of 4/3 for any fixed m. Yet, it approaches the price of anarchy as m grows. For general (monotone) cost functions, the mediation ratio is at most m, a significant improvement over the unbounded price of anarchy.
【Keywords】:
【Paper Link】 【Pages】:667-673
【Authors】: Marcin Waniek ; Agata Niescieruk ; Tomasz P. Michalak ; Talal Rahwan
【Abstract】: Shubik's (all-pay) dollar auction is a simple yet powerful auction model that aims to shed light on the motives and dynamics of conflict escalation. Common intuition and experimental results suggest that the dollar auction is a trap, inducing conflict by its very design. However, O'Neill proved the surprising fact that, contrary to the experimental results and the intuition, the dollar auction has an immediate solution in pure strategies, i.e., theoretically it should not lead to conflict escalation. In this paper, inspired by the recent literature on spiteful bidders, we ask whether the escalation in the dollar auction can be induced by meanness. Our results confirm this conjecture in various scenarios.
【Keywords】:
【Paper Link】 【Pages】:674-680
【Authors】: Haifeng Xu ; Albert Xin Jiang ; Arunesh Sinha ; Zinovi Rabinovich ; Shaddin Dughmi ; Milind Tambe
【Abstract】: Most models of Stackelberg security games assume that the attacker only knows the defender's mixed strategy, but is not able to observe (even partially) the instantiated pure strategy. Such partial observation of the deployed pure strategy — an issue we refer to as information leakage — is a significant concern in practical applications. While previous research on patrolling games has considered the attacker's real-time surveillance, our settings, therefore models and techniques, are fundamentally different. More specifically, after describing the information leakage model, we start with an LP formulation to compute the defender's optimal strategy in the presence of leakage. Perhaps surprisingly, we show that a key subproblem to solve this LP (more precisely, the defender oracle) is NP-hard even for the simplest of security game models. We then approach the problem from three possible directions: efficient algorithms for restricted cases, approximation algorithms, and heuristic algorithms for sampling that improves upon the status quo. Our experiments confirm the necessity of handling information leakage and the advantage of our algorithms.
【Keywords】:
【Paper Link】 【Pages】:681-688
【Authors】: Yue Yin ; Haifeng Xu ; Jiarui Gan ; Bo An ; Albert Xin Jiang
【Abstract】: Security agencies in the real world often need to protect targets with time-dependent values, e.g., tourist sites where the number of travelers changes over time. Since the values of different targets often change asynchronously, the defender can relocate security resources among targets dynamically to make the best use of limited resources. We propose a game-theoretic scheme to develop dynamic, randomized security strategies in consideration of adversary's surveillance capability. This differs from previous studies on security games by considering varying target values and continuous strategy spaces of the security agency and the adversary. The main challenge lies in the computational intensiveness due to the continuous, hence infinite strategy spaces. We propose an optimal algorithm and an arbitrarily near-optimal algorithm to compute security strategies under different conditions. Experimental results show that both algorithms significantly outperform existing approaches.
【Keywords】:
【Paper Link】 【Pages】:689-695
【Authors】: Supratik Chakraborty ; Dror Fried ; Kuldeep S. Meel ; Moshe Y. Vardi
【Abstract】: The recent surge of interest in reasoning about probabilistic graphical models has led to the development of various techniques for probabilistic reasoning. Of these, techniques based on weighted model counting are particularly interesting since they can potentially leverage recent advances in unweighted model counting and in propositional satisfiability solving. In this paper, we present a new approach to weighted model counting via reduction to unweighted model counting. Our reduction, which is polynomial-time and preserves the normal form (CNF/DNF) of the input formula, allows us to exploit advances in unweighted model counting to solve weighted model counting instances. Experiments with weighted model counters built using our reduction indicate that these counters performs much better than a state-of-the-art weighted model counter.
【Keywords】:
【Paper Link】 【Pages】:696-702
【Authors】: Radu Marinescu ; Rina Dechter ; Alexander T. Ihler
【Abstract】: Marginal MAP is known to be a difficult task for graphical models, particularly because the evaluation of each MAP assignment involves a conditional likelihood computation. In order to minimize the number of likelihood evaluations, we focus in this paper on best-first search strategies for exploring the space of partial MAP assignments. We analyze the potential relative benefits of several best-first search algorithms and demonstrate their effectiveness against recent branch and bound schemes through extensive empirical evaluations. Our results show that best-first search improves significantly over existing depth-first approaches, in many cases by several orders of magnitude, especially when guided by relatively weak heuristics.
【Keywords】:
【Paper Link】 【Pages】:703-709
【Authors】: Alexander Motzek ; Ralf Möller
【Abstract】: Modeling causal dependencies often demands cycles at a coarse-grained temporal scale. If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with dynamic Bayesian networks, spreading indirect dependencies over time and enforcing an infinitesimal resolution of time. Without a "causal design, " i.e., without anticipating indirect influences appropriately in time, we argue that such networks return spurious results. By introducing activator random variables, we propose template fragments for modeling dynamic Bayesian networks under a causal use of time, anticipating indirect influences on a solid mathematical basis, obeying the laws of Bayesian networks.
【Keywords】:
【Paper Link】 【Pages】:710-716
【Authors】: Biao Qin
【Abstract】: Differentiation is an important inference method in Bayesian networks and intervention is a basic notion in causal Bayesian networks. In this paper, we reveal the connection between differentiation and intervention in Bayesian networks. We first encode an intervention as changing a conditional probabilistic table into a partial intervention table. We next introduce a jointree algorithm to compute the full atomic interventions of all nodes with respect to evidence in a Bayesian network. We further discover that an intervention has differential semantics if the intervention variables can reach the evidence in Bayesian networks and the output of the state-of-the-art algorithm is not the differentiation but the intervention of a Bayesian network if the differential nodes cannot reach any one of the evidence nodes. Finally, we present experimental results to demonstrate the efficiency of our algorithm to infer the causal effect in Bayesian networks.
【Keywords】:
【Paper Link】 【Pages】:717-724
【Authors】: Matteo Venanzi ; W. T. Luke Teacy ; Alex Rogers ; Nick R. Jennings
【Abstract】: We propose a new Bayesian model for reliable aggregation of crowdsourced estimates of real-valued quantities in participatory sensing applications. Existing approaches focus on probabilistic modelling of user's reliability as the key to accurate aggregation. However, these are either limited to estimating discrete quantities, or require a significant number of reports from each user to accurately model their reliability. To mitigate these issues, we adopt a community-based approach, which reduces the data required to reliably aggregate real-valued estimates, by leveraging correlations between the reporting behaviour of users belonging to different communities. As a result, our method is up to 16.6% more accurate than existing state-of-the-art methods and is up to 49% more effective under data sparsity when used to estimate Wi-Fi hotspot locations in a real-world crowdsourcing application.
【Keywords】:
【Paper Link】 【Pages】:725-732
【Authors】: Yinqing Xu ; Bei Shi ; Wentao Tian ; Wai Lam
【Abstract】: Many existing methods on review spam detection considering text content merely utilize simple text features such as content similarity. We explore a novel idea of exploiting text generality for improving spam detection. Besides, apart from the task of review spam detection, although there have also been some works on identifying the review spammers (users) and the manipulated offerings (items), no previous works have attempted to solve these three tasks in a unified model. We have proposed a unified probabilistic graphical model to detect the suspicious review spams, the review spammers and the manipulated offerings in an unsupervised manner. Experimental results on three review corpora including Amazon, Yelp and TripAdvisor have demonstrated the superiority of our proposed model compared with the state-of-the-art models.
【Keywords】:
【Paper Link】 【Pages】:733-739
【Authors】: Carlos Ansótegui ; Yuri Malitsky ; Horst Samulowitz ; Meinolf Sellmann ; Kevin Tierney
【Abstract】: Automatic algorithm configurators are important practical tools for improving program performance measures, such as solution time or prediction accuracy. Local search approaches in particular have proven very effective for tuning algorithms. In sequential local search, the use of predictive models has proven beneficial for obtaining good tuning results. We study the use of non-parametric models in the context of population-based algorithm configurators. We introduce a new model designed specifically for the task of predicting high-performance regions in the parameter space. Moreover, we introduce the ideas of genetic engineering of offspring as well as sexual selection of parents. Numerical results show that model-based genetic algorithms significantly improve our ability to effectively configure algorithms automatically.
【Keywords】:
【Paper Link】 【Pages】:740-746
【Authors】: Eli Boyarski ; Ariel Felner ; Roni Stern ; Guni Sharon ; David Tolpin ; Oded Betzalel ; Solomon Eyal Shimony
【Abstract】: Conflict-Based Search (CBS) and its enhancements, Meta-Agent CBS and bypassing conflicts are amongst the strongest newly introduced algorithms for Multi-Agent Path Finding. This paper introduces two new improvements to CBS and incorporates them into a coherent, improved version of CBS, namely ICBS. Experimental results show that each of these improvements further reduces the runtime over the existing CBS-based approaches. When all improvements are combined, an even larger improvement is achieved, producing state-of-the art results for a number of domains.
【Keywords】:
【Paper Link】 【Pages】:747-753
【Authors】: Shaowei Cai
【Abstract】: The problem of finding a minimum vertex cover (MinVC) in a graph is a well known NP-hard problem with important applications. There has been much interest in developing heuristic algorithms for finding a "good" vertex cover in graphs. In practice, most heuristic algorithms for MinVC are based on the local search method. Previously, local search algorithms for MinVC have focused on solving academic benchmarks where the graphs are of relatively small size, and they are not suitable for solving massive graphs as they usually have high-complexity heuristics. In this paper, we propose a simple and fast local search algorithms called FastVC for solving MinVC in massive graphs, which is based on two low-complexity heuristics. Experimental results on a broad range of real world massive graphs show that FastVC finds much better vertex cover (and thus also independent sets) than state of the art local search algorithms for MinVC.
【Keywords】:
【Paper Link】 【Pages】:754-760
【Authors】: Tristan Cazenave
【Abstract】: Monte Carlo Tree Search (MCTS) is the state of the art algorithm for many games including the game of Go and General Game Playing (GGP). The standard algorithm for MCTS is Upper Confidence bounds applied to Trees (UCT). For games such as Go a big improvement over UCT is the Rapid Action Value Estimation (RAVE) heuristic. We propose to generalize the RAVE heuristic so as to have more accurate estimates near the leaves. We test the resulting algorithm named GRAVE for Atarigo, Knighthrough, Domineering and Go.
【Keywords】:
【Paper Link】 【Pages】:761-768
【Authors】: Yolanda E.-Martín ; María D. R.-Moreno ; David E. Smith
【Abstract】: Goal Recognition is the task of inferring an actor's goals given some or all of the actor's observed actions. There is considerable interest in Goal Recognition for use in intelligent personal assistants, smart environments, intelligent tutoring systems, and monitoring user's needs. In much of this work, the actor's observed actions are compared against a generated library of plans. Recent work by Ramirez and Geffner makes use of AI planning to determine how closely a sequence of observed actions matches plans for each possible goal. For each goal, this is done by comparing the cost of a plan for that goal with the cost of a plan for that goal that includes the observed actions. This approach yields useful rankings, but is impractical for real-time goal recognition in large domains because of the computational expense of constructing plans for each possible goal. In this paper, we introduce an approach that propagates cost and interaction information in a plan graph, and uses this information to estimate goal probabilities. We show that this approach is much faster, but still yields high quality results.
【Keywords】:
【Paper Link】 【Pages】:769-775
【Authors】: Daniel Hennes ; Dario Izzo
【Abstract】: Planning an interplanetary trajectory is a very complex task, traditionally accomplished by domain experts using computer-aided design tools. Recent advances in trajectory optimization allow automation of part of the trajectory design but have yet to provide an efficient way to select promising planetary encounter sequences. In this work, we present a heuristic-free approach to automated trajectory planning (including the encounter sequence planning) based on Monte Carlo Tree Search (MCTS). We discuss a number of modifications to traditional MCTS unique to the domain of interplanetary trajectory planning and provide results on the Rosetta and Cassini-Huygens interplanetary mission design problems. The resulting heuristic-free method is found to be orders of magnitude more efficient with respect to a standard tree search with heuristic-based pruning which is the current state-of-the art in this domain.
【Keywords】:
【Paper Link】 【Pages】:776-783
【Authors】: Dileep Kini ; Sumit Gulwani
【Abstract】: Several applications including text-to-speech require some normalized format of non-standard words in various domains such as numbers, dates, and currencies and in various human languages. The traditional approach of manually constructing a program for such a normalization task requires expertise in both programming and target (human) language and further does not scale to a large number of domain, format, and target language combinations. We propose to learn programs for such normalization tasks through examples. We present a domain-specific programming language that offers appropriate abstractions for succinctly describing such normalization tasks, and then present a novel search algorithm that can effectively learn programs in this language from input-output examples. We also briefly describe domain-specific heuristics for guiding users of our system to provide representative examples for normalization tasks related to that domain. Our experiments show that weare able to effectively learn desired programs for a variety of normalization tasks.
【Keywords】:
【Paper Link】 【Pages】:784-791
【Authors】: Mike Phillips ; Venkatraman Narayanan ; Sandip Aine ; Maxim Likhachev
【Abstract】: Recently, a number of papers have shown that for many domains, using multiple heuristics in independent searches performs better than combining them into a single heuristic. Furthermore, using a large number of “weak” heuristics could potentially eliminate the need for the careful design of a few. The standard approach to distribute computation in these multi-heuristic searches is to rotate through the heuristics in a round-robin fashion. However, this strategy can be inefficient especially in the case when only a few of the heuristics are leading to progress. In this paper, we present two principled methods to adaptively distribute computation time among the different searches of the Multi- Heuristic A algorithm. The first method, Meta-A, constructs and searches a meta-graph, which represents the problem of finding the best heuristic as the problem of minimizing the total number of expansions. The second treats the scheduling of searches with different heuristics as a multi-armed bandit problem. It applies Dynamic Thompson Sampling (DTS) to keep track of what searches are making progress the most and continuously re-computes the schedule of searches based on this information. We provide a theoretical analysis and compare our new strategies with the round-robin method on a 12-DOF full-body motion planning problem and on sliding tile puzzle problems. In these experiments, we used up to 20 heuristics and observed a several times speedup without loss in solution quality.
【Keywords】:
【Paper Link】 【Pages】:792-800
【Authors】: Mohammad Raza ; Sumit Gulwani ; Natasa Milic-Frayling
【Abstract】: Compositionality is a fundamental notion in computation whereby complex abstractions can be constructed from simpler ones, but this property has so far escaped the paradigm of end-user programming from examples or natural language. Existing approaches restrict end users to only give holistic end-to-end specifications, which limits the expressivity and scalability of these approaches to relatively simple programs in very restricted domains. In this paper we propose a new approach to end-user program synthesis in which input can be given in a compositional manner through a combination of natural language and examples. We present a domain-agnostic program synthesis algorithm and demonstrate its application to an expressive string manipulation language. We evaluate on a range of complex examples from help forums that are beyond the scope of previous systems.
【Keywords】:
【Paper Link】 【Pages】:801-807
【Authors】: Erik S. Steinmetz ; Maria L. Gini
【Abstract】: We propose a method to guide a Monte Carlo search in the initial moves of the game of Go. Our method matches the current state of a Go board against clusters of board configurations that are derived from a large number of games played by experts. The main advantage of this method is that it does not require an exact match of the current board, and hence is effective for a longer sequence of moves compared to traditional opening books. We apply this method to two different open-source Go-playing programs. Our experiments show that this method, through its filtering or biasing the choice of a next move to a small subset of possible moves, improves play effectively in the initial moves of a game.
【Keywords】:
【Paper Link】 【Pages】:808-814
【Authors】: René van Bevern ; Christian Komusiewicz ; Rolf Niedermeier ; Manuel Sorge ; Toby Walsh
【Abstract】: An author's profile on Google Scholar consists of indexed articles and associated data, such as the number of citations and the H-index. The author is allowed to merge articles, which may affect the H-index. We analyze the parameterized complexity of maximizing the H-index using article merges. Herein, to model realistic manipulation scenarios, we define a compatability graph whose edges correspond to plausible merges. Moreover, we consider multiple possible measures for computing the citation count of a merged article. For the measure used by Google Scholar, we give an algorithm that maximizes the H-index in linear time if the compatibility graph has constant-size connected components. In contrast, if we allow to merge arbitrary articles, then already increasing the H-index by one is NP-hard. Experiments on Google Scholar profiles of AI researchers show that the H-index can be manipulated substantially only by merging articles with highly dissimilar titles, which would be easy to discover.
【Keywords】:
【Paper Link】 【Pages】:815-822
【Authors】: Nic Wilson ; Abdul Razak ; Radu Marinescu
【Abstract】: Computing the set of optimal solutions for a multi-objective constraint optimisation problem can be computationally very challenging. Also, when solutions are only partially ordered, there can be a number of different natural notions of optimality, one of the most important being the notion of Possibly Optimal, i.e., optimal in at least one scenario compatible with the inter-objective tradeoffs. We develop an AND/OR Branch-and-Bound algorithm for computing the set of Possibly Optimal solutions, and compare variants of the algorithm experimentally.
【Keywords】:
【Paper Link】 【Pages】:823-829
【Authors】: Mehwish Alam ; Aleksey Buzmakov ; Víctor Codocedo ; Amedeo Napoli
【Abstract】: The popularization and quick growth of Linked Open Data (LOD) has led to challenging aspects regarding quality assessment and data exploration of the RDF triples that shape the LOD cloud.Particularly, we are interested in the completeness of data and its potential to provide concept definitions in terms of necessary and sufficient conditions.In this work we propose a novel technique based on Formal Concept Analysis which organizes RDF data into a concept lattice.This allows data exploration as well as the discovery of implications, which are used to automatically detect missing information and then to complete RDF data.Moreover, this is a way of reconciling syntax and semantics in the LOD cloud.Finally, experiments on the DBpedia knowledge base show that the approach is well-founded and effective.
【Keywords】:
【Paper Link】 【Pages】:830-836
【Authors】: Claudiu Cristian Musat ; Boi Faltings
【Abstract】: Product review sites such as TripAdvisor, Yelp or Amazon provide a single, non personalized ranking of products. The sparse review data makes personalizing recommendations difficult. Topic Profile Collaborative Filtering exploits review texts to identify user profiles as a basis for similarity. We show that careful use of the available data and separating users into classes can greatly improve the performance of such techniques. We significantly improve MAE, RMSE, and Kendall tau, compared to the previous best results. In addition, we show that personalization does not benefit all the users to the same extent. We propose switching between a personalized and a non personalized method based on the user opinion profile. We show that the user's opinionatedness is a good indicator of whether the personalization will work or not.
【Keywords】:
【Paper Link】 【Pages】:837-843
【Authors】: Mehdi Samadi ; Partha Pratim Talukdar ; Manuela M. Veloso ; Tom M. Mitchell
【Abstract】: Recently, several Web-scale knowledge harvesting systems have been built, each of which is competent at extracting information from certain types of data (e.g., unstructured text, structured tables on the web, etc.). In order to determine the response to a new query posed to such systems (e.g., is sugar a healthy food?), it is useful to integrate opinions from multiple systems. If a response is desired within a specific time budget (e.g., in less than 2 seconds), then maybe only a subset of these resources can be queried. In this paper, we address the problem of knowledge integration for on-demand time-budgeted query answering. We propose a new method, AskWorld, which learns a policy that chooses which queries to send to which resources, by accommodating varying budget constraints that are available only at query (test) time. Through extensive experiments on real world datasets, we demonstrate AskWorld's capability in selecting most informative resources to query within test-time constraints, resulting in improved performance compared to competitive baselines.
【Keywords】:
【Paper Link】 【Pages】:844-853
【Authors】: Yuyin Sun ; Adish Singla ; Dieter Fox ; Andreas Krause
【Abstract】: Hierarchies of concepts are useful in many applications from navigation to organization of objects. Usually, a hierarchy is created in a centralized manner by employing a group of domain experts, a time-consuming and expensive process. The experts often design one single hierarchy to best explain the semantic relationships among the concepts, and ignore the natural uncertainty that may exist in the process. In this paper, we propose a crowdsourcing system to build a hierarchy and furthermore capture the underlying uncertainty. Our system maintains a distribution over possible hierarchies and actively selects questions to ask using an information gain criterion. We evaluate our methodology on simulated data and on a set of real world application domains. Experimental results show that our system is robust to noise, efficient in picking questions, cost-effective, and builds high quality hierarchies.
【Keywords】:
【Paper Link】 【Pages】:854-860
【Authors】: Francesco Belardinelli ; Davide Grossi ; Alessio Lomuscio
【Abstract】: We develop a methodology to model and verify open multi-agent systems (OMAS), where agents may join in or leave at run time. Further, we specify properties of interest on OMAS in a variant of first-order temporal-epistemic logic, whose characterising features include epistemic modalities indexed to individual terms, interpreted on agents appearing at a given state. This formalism notably allows to express group knowledge dynamically. We study the verification problem of these systems and show that, under specific conditions, finite bisimilar abstractions can be obtained.
【Keywords】:
【Paper Link】 【Pages】:861-867
【Authors】: Francesco Belardinelli ; Davide Grossi ; Nicolas Maudet
【Abstract】: The paper analyses multi-agent strategic dialogues on possibly infinite argumentation frameworks. We develop a formal model for representing such dialogues, and introduce FO A -ATL, a first-order extension of alternating-time logic, for expressing the interplay of strategic and argumentation-theoretic properties. This setting is investigated with respect to the model checking problem, by means of a suitable notion of bisimulation. This notion of bisimulation is also used to shed light on how static properties of argumentation frameworks influence their dynamic behaviour.
【Keywords】:
【Paper Link】 【Pages】:868-874
【Authors】: Davide Grossi ; Sanjay Modgil
【Abstract】: The paper develops a formal theory of the degree of justification of arguments, which relies solely on the structure of an argumentation framework. The theory is based on a generalisation of Dung’s notion of acceptability, making it sensitive to the numbers of attacks and counter-attacks on arguments. Graded generalisations of argumentation semantics are then obtained and studied. The theory is applied by showing how it can arbitrate between competing preferred extensions and how it captures a specific form of accrual in instantiated argumentation.
【Keywords】:
【Paper Link】 【Pages】:875-881
【Authors】: Antonio Lieto ; Daniele P. Radicioni ; Valentina Rho
【Abstract】: In this article we present DUAL-PECCS, an integrated Knowledge Representation system aimed at extending artificial capabilities in tasks such as conceptual categorization. It relies on two different sorts of cognitively inspired common-sense reasoning: prototypical reasoning and exemplars-based reasoning. Furthermore, it is grounded on the theoretical tenets coming from the dual process theory of the mind, and on the hypothesis of heterogeneous proxytypes, developed in the area of the biologically inspired cognitive architectures (BICA). The system has been integrated into the ACT-R cognitive architecture, and experimentally assessed in a conceptual categorization task, where a target concept illustrated by a simple common-sense linguistic description had to be identified by resorting to a mix of categorization strategies. Compared to human-level categorization, the obtained results suggest that our proposal can be helpful in extending the representational and reasoning conceptual capabilities of standard cognitive artificial systems.
【Keywords】:
【Paper Link】 【Pages】:882-888
【Authors】: Wanwei Liu ; Lei Song ; Ji Wang ; Lijun Zhang
【Abstract】: Probabilistic systems are an important theme in AI domain. As the specification language, PCTL is the most frequently used logic for reasoning about probabilistic properties. In this paper, we present a natural and succinct probabilistic extension of Mu-calculus, another prominent logic in the concurrency theory. We study the relationship with PCTL. Surprisingly, the expressiveness is highly orthogonal with PCTL. The proposed logic captures some useful properties which cannot be expressed in PCTL. We investigate the model checking and satisfiability problem, and show that the model checking problem is in UP and co-UP, and the satisfiability checking can be decided via reducing into solving parity games. This is in contrast to PCTL as well, whose satisfiability checking is still an open problem.
【Keywords】:
【Paper Link】 【Pages】:889-895
【Authors】: Denis Deratani Mauá ; Cassio Polpo de Campos ; Fábio Gagliardi Cozman
【Abstract】: We study the computational complexity of finding maximum a posteriori configurations in Bayesian networks whose probabilities are specified by logical formulas. This approach leads to a fine grained study in which local information such as context-sensitive independence and determinism can be considered. It also allows us to characterize more precisely the jump from tractability to NP-hardness and beyond, and to consider the complexity introduced by evidence alone.
【Keywords】:
【Paper Link】 【Pages】:896-902
【Authors】: Marius Pasca ; Hylke Buisman
【Abstract】: This paper presents a weakly supervised method that decomposes potentially compositional topics (Swiss passport) into zero or more constituent topics (Switzerland, Passport), where all topics are entries in a knowledge repository. The method increases the connectivity of the knowledge repository and, more importantly, identifies the constituent topics whose meaning can be later aggregated into the meaning of the compositional topics. By exploiting evidence within Wikipedia articles, the method acquires constituent topics of Freebase topics at precision and recall above 0.60, over multiple human-annotated evaluation sets.
【Keywords】:
【Paper Link】 【Pages】:903-909
【Authors】: Ke Wang ; Zhendong Su
【Abstract】: Raven’s Progressive Matrices (RPMs) are a popular family of general intelligence tests, and provide a non-verbal measure of a test subject’s reasoning abilities. Traditionally RPMs have been manually designed. To make them readily available for both practice and examination, we tackle the problem of automatically synthesizing RPMs. Our goal is to efficiently generate a large number of RPMs that are authentic (i.e. similar to manually written problems), interesting (i.e. diverse in terms of difficulty), and well-formed (i.e unambiguous). The main technical challenges are: How to formalize RPMs to accommodate their seemingly enormous diversity, and how to define and enforce their validity? To this end, we (1) introduce an abstract representation of RPMs using first-order logic, and (2) restrict instantiations to only valid RPMs. We have realized our approach and evaluated its efficiency and effectiveness. We show that our system can generate hundreds of valid problems per second with varying levels of difficulty. More importantly, we show, via a user study with 24 participants, that the generated problems are statistically indistinguishable from actual problems. This work is an exciting instance of how logic and reasoning may aid general learning.
【Keywords】:
【Paper Link】 【Pages】:910-917
【Authors】: Peng Zhang ; Jae Hee Lee ; Jochen Renz
【Abstract】: Qualitative spatial reasoning deals with relational spatial knowledge and with how this knowledge can be processed efficiently. Identifying suitable representations for spatial knowledge and checking whether the given knowledge is consistent has been the main research focus in the past two decades. However, where the spatial information comes from, what kind of information can be obtained and how it can be obtained has been largely ignored. This paper is an attempt to start filling this gap. We present a method for extracting detailed spatial information from sensor measurements of regions. We analyse how different sparse sensor measurements can be integrated and what spatial information can be extracted from sensor measurements. Different from previous approaches to qualitative spatial reasoning, our method allows us to obtain detailed information about the internal structure of regions. The result has practical implications, for example, in disaster management scenarios, which include identifying the safe zones in bushfire and flood regions.
【Keywords】:
【Paper Link】 【Pages】:918-924
【Authors】: Francis Bisson ; Hugo Larochelle ; Froduald Kabanza
【Abstract】: Plan recognition, the problem of inferring the goals or plans of an observed agent, is a key element of situation awareness in human-machine and machine-machine interactions for many applications. Some plan recognition algorithms require knowledge about the potential behaviours of the observed agent in the form of a plan library, together with a decision model about how the observed agent uses the plan library to make decisions. It is however difficult to elicit and specify the decision model a priori. In this paper, we present a recursive neural network model that learns such a decision model automatically. We discuss promising experimental results of the approach with comparisons to selected state-of-the-art plan recognition algorithms on three benchmark domains.
【Keywords】:
【Paper Link】 【Pages】:925-931
【Authors】: Matteo Denitto ; Alessandro Farinelli ; Manuele Bicego
【Abstract】: Biclustering is an intrinsically challenging and highly complex problem, particularly studied in the biology field, where the goal is to simultaneously cluster genes and samples of an expression data matrix. In this paper we present a novel approach to gene expression biclustering by providing a binary Factor Graph formulation to such problem. In more detail, we reformulate biclustering as a sequential search for single biclusters and use an efficient optimization procedure based on the Max Sum algorithm. Such approach, drastically alleviates the scaling issues of previous approaches for biclustering based on Factor Graphs obtaining significantly more accurate results on synthetic datasets. A further analysis on two real-world datasets confirms the potentials of the proposed methodology when compared to alternative state of the art methods.
【Keywords】:
【Paper Link】 【Pages】:932-938
【Authors】: Aaron W. Dennis ; Dan Ventura
【Abstract】: Sum-product networks (SPNs) are rooted, directed acyclic graphs (DAGs) of sum and product nodes with well-defined probabilistic semantics. Moreover, exact inference in the distribution represented by an SPN is guaranteed to take linear time in the size of the DAG. In this paper we introduce an algorithm that learns the structure of an SPN using a greedy search approach. It incorporates methods used in a previous SPN structure-learning algorithm, but, unlike the previous algorithm, is not limited to learning tree-structured SPNs. Several proven ideas from circuit complexity theory along with our experimental results provide evidence for the advantages of SPNs with less-restrictive, non-tree structures.
【Keywords】:
【Paper Link】 【Pages】:939-945
【Authors】: Wei Gao ; Zhi-Hua Zhou
【Abstract】: AUC (Area Under ROC Curve) has been an important critrion widely used in diversity learning tasks. To optimize AUC, many learning approaches have been developed, most working with pairwise surrogate losses. Thus, it is important to study the AUC consistency based on minimizing pairwise surrogate losses. In this paper, we introduce the generalized calibration for AUC optimization, and prove that it is a necessary condition for AUC consistency. We then provide a new sufficient condition for AUC consistency, and show its usefulness in studying the consistency of various surrogate losses, as well as the invetion of new consistent losses. Further, we derive regret bounds for exponential and logistic losses, and present regret bounds for more general surrogate losses in realizable setting. Finally, we prove regret bounds that disclose the equivalence between the pairwise exponential loss of AUC and the univariate exponential loss of accuracy.
【Keywords】:
【Paper Link】 【Pages】:946-952
【Authors】: Sheng-Jun Huang ; Songcan Chen ; Zhi-Hua Zhou
【Abstract】: Active learning reduces the labeling cost by selectively querying the most valuable information from the annotator. It is essentially important for multi-label learning, where the labeling cost is rather high because each object may be associated with multiple labels. Existing multi-label active learning (MLAL) research mainly focuses on the task of selecting instances to be queried. In this paper, we disclose for the first time that the query type, which decides what information to query for the selected instance, is more important. Based on this observation, we propose a novel MLAL framework to query the relevance ordering of label pairs, which gets richer information from each query and requires less expertise of the annotator. By incorporating a simple selection strategy and a label ranking model into our framework, the proposed approach can reduce the labeling effort of annotators significantly. Experiments on 20 benchmark datasets and a manually labeled real data validate that our approach not only achieves superior performance on classification, but also provides accurate ranking for relevant labels.
【Keywords】:
【Paper Link】 【Pages】:953-959
【Authors】: Wenbin Jiang ; Qun Liu ; Thepchai Supnithi
【Abstract】: Cross-lingual induction aims to acquire for one language some linguistic structures resorting to annotations from another language. It works well for simple structured predication problems such as part-of-speech tagging and dependency parsing, but lacks of significant progress for more complicated problems such as constituency parsing and deep semantic parsing, mainly due to the structural non-isomorphism between languages. We propose a decomposed projection strategy for cross-lingual induction, where cross-lingual projection is performed in unit of fundamental decisions of the structured predication. Compared with the structured projection that projects the complete structures, decomposed projection achieves better adaptation of non-isomorphism between languages and efficiently acquires the structured information across languages, thus leading to better performance. For joint cross-lingual induction of constituency and dependency grammars, decomposed cross-lingual induction achieves very significant improvement in both constituency and dependency grammar induction.
【Keywords】:
【Paper Link】 【Pages】:960-966
【Authors】: Miao Lin ; Hong Cao ; Vincent W. Zheng ; Kevin Chen-Chuan Chang ; Shonali Krishnaswamy
【Abstract】: Mobile user verification is to authenticate whether a given user is the legitimate user of a smartphone device. Unlike the current methods that commonly require users active cooperation, such as entering a short pin or a one-stroke draw pattern, we propose a new passive verification method that requires minimal imposition of users through modelling users subtle mobility patterns. Specifically, our method computes the statistical ambience features on WiFi and cell tower data from location anonymized data sets and then we customize Hidden Markov Model (HMM) to capture the spatial-temporal patterns of each user's mobility behaviors. Our learned model is subsequently validated and applied to verify a test user in a time-evolving manner through sequential likelihood test. Experimentally, our method achieves 72% verification accuracy with less than a day's data and a detection rate of 94% of illegitimate users with only 2 hours of selected data. As the first verification method that models users' mobility pattern on location-anonymized smartphone data, our achieved result is significant showing the good possibility of leveraging such information for live user authentication.
【Keywords】:
【Paper Link】 【Pages】:967-973
【Authors】: Deepan Subrahmanian Palguna ; Vikas Joshi ; Venkatesan T. Chakaravarthy ; Ravi Kothari ; L. Venkata Subramaniam
【Abstract】: The daily volume of Tweets in Twitter is around 500 million, and the impact of this data on applications ranging from public safety, opinion mining, news broadcast, etc., is increasing day by day. Analyzing large volumes of Tweets for various applications would require techniques that scale well with the number of Tweets. In this work we come up with a theoretical formulation for sampling Twitter data. We introduce novel statistical metrics to quantify the statistical representativeness of the Tweet sample, and derive sufficient conditions on the number of samples needed for obtaining highly representative Tweet samples. These new statistical metrics quantify the representativeness or goodness of the sample in terms of frequent keyword identification and in terms of restoring public sentiments associated with these keywords. We use uniform random sampling with replacement as our algorithm, and sampling could serve as a first step before using other sophisticated summarization methods to generate summaries for human use. We show that experiments conducted on real Twitter data agree with our bounds. In these experiments, we also compare different kinds of random sampling algorithms. Our bounds are attractive since they do not depend on the total number of Tweets in the universe. Although our ideas and techniques are specific to Twitter, they could find applications in other areas as well.
【Keywords】:
【Paper Link】 【Pages】:974-
【Authors】: Weiwei Shen ; Jun Wang ; Yu-Gang Jiang ; Hongyuan Zha
【Abstract】: The investigation and development of new methods from diverse perspectives to shed light on portfolio choice problems has never stagnated in financial research. Recently, multi-armed bandits have drawn intensive attention in various machine learning applications in online settings. The tradeoff between exploration and exploitation to maximize rewards in bandit algorithms naturally establishes a connection to portfolio choice problems. In this paper, we present a bandit algorithm for conducting online portfolio choices by effectually exploiting correlations among multiple arms. Through constructing orthogonal portfolios from multiple assets and integrating with the upper confidence bound bandit framework, we derive the optimal portfolio strategy that represents the combination of passive and active investments according to a risk-adjusted reward function. Compared with oft-quoted trading strategies in finance and machine learning fields across representative real-world market datasets, the proposed algorithm demonstrates superiority in both risk-adjusted return and cumulative wealth.
【Keywords】:
【Paper Link】 【Pages】:891-988
【Authors】: Adish Singla ; Eric Horvitz ; Pushmeet Kohli ; Ryen White ; Andreas Krause
【Abstract】: How should we gather information in a network, where each node's visibility is limited to its local neighborhood? This problem arises in numerous real-world applications, such as surveying and task routing in social networks, team formation in collaborative networks and experimental design with dependency constraints. Often the informativeness of a set of nodes can be quantified via a submodular utility function. Existing approaches for submodular optimization, however, require that the set of all nodes that can be selected is known ahead of time, which is often unrealistic. In contrast, we propose a novel model where we start our exploration from an initial node, and new nodes become visible and available for selection only once one of their neighbors has been chosen. We then present a general algorithm elgreedy for this problem, and provide theoretical bounds on its performance dependent on structural properties of the underlying network. We evaluate our methodology on various simulated problem instances as well as on data collected from social question answering system deployed within a large enterprise.
【Keywords】:
【Paper Link】 【Pages】:989-995
【Authors】: Chang Wang ; Liangliang Cao ; Bowen Zhou
【Abstract】: In this paper, we present a novel approach for medical synonym extraction. We aim to integrate the term embedding with the medical domain knowledge for healthcare applications. One advantage of our method is that it is very scalable. Experiments on a dataset with more than 1M term pairs show that the proposed approach outperforms the baseline approaches by a large margin.
【Keywords】:
【Paper Link】 【Pages】:996-1002
【Authors】: Yichen Wang ; Aditya Pal
【Abstract】: Emotion detection can considerably enhance our understanding of users' emotional states. Understanding users' emotions especially in a real-time setting can be pivotal in improving user interactions and understanding their preferences. In this paper, we propose a constraint optimization framework to discover emotions from social media content of the users. Our framework employs several novel constraints such as emotion bindings, topic correlations, along with specialized features proposed by prior work and well-established emotion lexicons. We propose an efficient inference algorithm and report promising empirical results on three diverse datasets.
【Keywords】:
【Paper Link】 【Pages】:1003-1009
【Authors】: Yue Wang ; Cheng Si ; Xintao Wu
【Abstract】: Differential privacy preserving regression models guarantee protection against attempts to infer whether a subject was included in the training set used to derive a model. It is not designed to protect attribute privacy of a target individual when model inversion attacks are launched. In model inversion attacks, an adversary uses the released model to make predictions of sensitive attributes (used as input to the model) of a target individual when some background information about the target individual is available. Previous research showed that existing differential privacy mechanisms cannot effectively prevent model inversion attacks while retaining model efficacy. In this paper, we develop a novel approach which leverages the functional mechanism to perturb coefficients of the polynomial representation of the objective function but effectively balances the privacy budget for sensitive and non-sensitive attributes in learning the differential privacy preserving regression model. Theoretical analysis and empirical evaluations demonstrate our approach can effectively prevent model inversion attacks and retain model utility.
【Keywords】:
【Paper Link】 【Pages】:1010-1016
【Authors】: Junfeng Wen ; Russell Greiner ; Dale Schuurmans
【Abstract】: Covariate shift is a fundamental problem for learning in non-stationary environments where the conditional distribution p(y|x) is the same between training and test data while their marginal distributions ptr(x) and pte(x) are different. Although many covariate shift correction techniques remain effective for real world problems, most do not scale well in practice. In this paper, using inspiration from recent optimization techniques, we apply the Frank-Wolfe algorithm to two well-known covariate shift correction techniques, Kernel Mean Matching (KMM) and Kullback-Leibler Importance Estimation Procedure (KLIEP), and identify an important connection between kernel herding and KMM. Our complexity analysis shows the benefits of the Frank-Wolfe approach over projected gradient methods in solving KMM and KLIEP. An empirical study then demonstrates the effectiveness and efficiency of the Frank-Wolfe algorithm for correcting covariate shift in practice.
【Keywords】:
【Paper Link】 【Pages】:1017-1024
【Authors】: Run-ze Wu ; Qi Liu ; Yuping Liu ; Enhong Chen ; Yu Su ; Zhigang Chen ; Guoping Hu
【Abstract】: Cognitive modelling can discover the latent characteristics of examinees for predicting their performance (i.e. scores) on each problem. As cognitive modelling is important for numerous applications, e.g. personalized remedy recommendation, some solutions have been designed in the literature. However, the problem of extracting information from both objective and subjective problems to get more precise and interpretable cognitive analysis is still underexplored. To this end, we propose a fuzzy cognitive diagnosis framework (FuzzyCDF) for examinees' cognitive modelling with both objective and subjective problems. Specifically, to handle the partially correct responses on subjective problems, we first fuzzify the skill proficiency of examinees. Then, we combine fuzzy set theory and educational hypotheses to model the examinees' mastery on the problems. Further, we simulate the generation of examination scores by considering both slip and guess factors. Extensive experiments on three real-world datasets prove that FuzzyCDF can predict examinee performance more effectively, and the output of FuzzyCDF is also interpretative.
【Keywords】:
【Paper Link】 【Pages】:1025-1032
【Authors】: Rui Yan ; Yiping Song ; Cheng-Te Li ; Ming Zhang ; Xiaohua Hu
【Abstract】: Crowdsourcing machine translation shows advantages of lower expense in money to collect the translated data. Yet, when compared with translation by trained professionals, results collected from non-professional translators might yield low-quality outputs. A general solution for crowdsourcing practitioners is to employ a large amount of labor force to gather enough redundant data and then solicit from it. Actually we can further save money by avoid collecting bad translations. We propose to score Turkers by their authorities during observation, and then stop hiring the unqualified Turkers. In this way, we bring both opportunities and risks in crowdsourced translation: we can make it cheaper than cheaper while we might suffer from quality loss. In this paper, we propose a graph-based PageRank-HITS Hybrid model to distinguish authoritative workers from unreliable ones. The algorithm captures the intuition that good translation and good workers are mutually reinforced iteratively in the proposed frame. We demonstrate the algorithm will keep the performance while reduce work force and hence cut cost. We run experiments on the NIST 2009 Urdu-to-English evaluation set with Mechanical Turk, and quantitatively evaluate the performance in terms of BLEU score, Pearson correlation and real money.
【Keywords】:
【Paper Link】 【Pages】:1033-1039
【Authors】: Yang Yang ; Han-Jia Ye ; De-Chuan Zhan ; Yuan Jiang
【Abstract】: In real world applications, data are often with multiple modalities. Previous works assumed that each modality contains sufficient information for target and can be treated with equal importance. However, it is often that different modalities are of various importance in real tasks, e.g., the facial feature is weak modality and the fingerprint feature is strong modality in ID recognition. In this paper, we point out that different modalities should be treated with different strategies and propose the Auxiliary information Regularized Machine (ARM), which works by extracting the most discriminative feature subspace of weak modality while regularizing the strong modal predictor. Experiments on binary and multi-class datasets demonstrate the advantages of our proposed approach ARM.
【Keywords】:
【Paper Link】 【Pages】:1040-1046
【Authors】: Biao Zhang ; Jinsong Su ; Deyi Xiong ; Hong Duan ; Junfeng Yao
【Abstract】: Reordering model adaptation remains a big challenge in statistical machine translation because reordering patterns of translation units often vary dramatically from one domain to another. In this paper, we propose a novel adaptive discriminative reordering model (DRM) based on structural learning, which can capture correspondences among reordering features from two different domains. Exploiting both in-domain and out-of-domain monolingual corpora, our model learns a shared feature representation for cross-domain phrase reordering. Incorporating features of this representation, the DRM trained on out-of-domain corpus generalizes better to in-domain data. Experiment results on the NIST Chinese-English translation task show that our approach significantly outperforms a variety of baselines.
【Keywords】:
【Paper Link】 【Pages】:1047-1053
【Authors】: Jing Zhao ; Shiliang Sun
【Abstract】: The recently proposed Gaussian process dynamical models (GPDMs) have been successfully applied to time series modeling. There are four learning algorithms for GPDMs: maximizing a posterior (MAP), fixing the kernel hyperparameters α (Fix.α), balanced GPDM (B-GPDM) and two-stage MAP (T.MAP), which are designed for model training with complete data. When data are incomplete, GPDMs reconstruct the missing data using a function of the latent variables before parameter updates, which, however, may cause cumulative errors. In this paper, we present four new algorithms (MAP+, Fix.α+, B-GPDM+ and T.MAP+) for learning GPDMs with incomplete training data and a new conditional model (CM+) for recovering incomplete test data. Our methods adopt the Bayesian framework and can fully and properly use the partially observed data. We conduct experiments on incomplete motion capture data (walk, run, swing and multiple-walker) and make comparisons with the existing four algorithms as well as k-NN, spline interpolation and VGPDS. Our methods perform much better on both training with incomplete data and recovering incomplete test data.
【Keywords】:
【Paper Link】 【Pages】:1054-1060
【Authors】: Xiaoqing Zheng ; Haoyuan Peng ; Yi Chen ; Pengjing Zhang ; Wenqiang Zhang
【Abstract】: We describe a novel convolutional neural network architecture with k-max pooling layer that is able to successfully recover the structure of Chinese sentences. This network can capture active features for unseen segments of a sentence to measure how likely the segments are merged to be the constituents. Given an input sentence, after all the scores of possible segments are computed, an efficient dynamic programming parsing algorithm is used to find the globally optimal parse tree. A similar network is then applied to predict syntactic categories for every node in the parse tree. Our networks archived competitive performance to existing benchmark parsers on the CTB-5 dataset without any task-specific feature engineering.
【Keywords】:
【Paper Link】 【Pages】:1061-1068
【Authors】: Jinhong Zhong ; Ke Tang ; Zhi-Hua Zhou
【Abstract】: Learning from crowds, where the labels of data instances are collected using a crowdsourcing way, has attracted much attention during the past few years. In contrast to a typical crowdsourcing setting where all data instances are assigned to annotators for labeling, active learning from crowds actively selects a subset of data instances and assigns them to the annotators, thereby reducing the cost of labeling. This paper goes a step further. Rather than assume all annotators must provide labels, we allow the annotators to express that they are unsure about the assigned data instances. By adding the “unsure” option, the workloads for the annotators are somewhat reduced, because saying “unsure” will be easier than trying to provide a crisp label for some difficult data instances. Moreover, it is safer to use “unsure” feedback than to use labels from reluctant annotators because the latter has more chance to be misleading. Furthermore, different annotators may experience difficulty in different data instances, and thus the unsure option provides a valuable ingredient for modeling crowds’ expertise. We propose the ALCU-SVM algorithm for this new learning problem. Experimental studies on simulated and real crowdsourcing data show that, by exploiting the unsure option, ALCU-SVM achieves very promising performance.
【Keywords】:
【Paper Link】 【Pages】:1069-1075
【Authors】: Natasha Alechina ; Brian Logan ; Hoang Nga Nguyen ; Franco Raimondi
【Abstract】: RB+-ATL is an extension of ATL where it is possible to model consumption and production of several resources by a set of agents. The model-checking problem for RB+-ATL is known to be decidable. However the only available model-checking algorithm for RB+-ATL uses a forward search of the state space, and hence does not have an efficient symbolic implementation. In this paper, we consider a fragment of RB+-ATL, 1RB+-ATL, that allows only one resource type. We give a symbolic model-checking algorithm for this fragment of RB+-ATL, and evaluate the performance of an MCMAS-based implementation of the algorithm on an example problem that can be scaled to large state spaces.
【Keywords】:
【Paper Link】 【Pages】:1076-1082
【Authors】: Xiaowei Huang ; Qingliang Chen ; Kaile Su
【Abstract】: This paper studies the complexity of model checking multiagent systems, in particular systems succinctly described by two practical representations: concurrent representation and symbolic representation. The logics we concern include branching time temporal logics and several variants of alternating time temporal logics.
【Keywords】:
【Paper Link】 【Pages】:1083-1089
【Authors】: Panagiotis Kouvaros ; Alessio Lomuscio
【Abstract】: We investigate the general problem of establishing whether a swarm satisfies an emergent property. We put forward a formal model for swarms that accounts for their nature of unbounded collections of agents following simple local protocols. We formally define the decision problem of determining whether a swarm satisfies an emergent property. We introduce a sound and complete procedure for solving the problem. We illustrate the technique by applying it to the Beta aggregation algorithm.
【Keywords】:
【Paper Link】 【Pages】:1090-1097
【Authors】: Aniello Murano ; Giuseppe Perelli
【Abstract】: In this paper we investigate the model-checking problem of pushdown multi-agent systems for ATL specifications.To this aim, we introduce pushdown game structures over which ATL formulas are interpreted. We show an algorithm that solves the addressed model-checking problem in 3ExpTime. We also provide a 2ExpSpace lower bound by showing a reduction from the word acceptance problem for deterministic Turing machines with doubly exponential space.
【Keywords】:
【Paper Link】 【Pages】:1098-1104
【Authors】: Muddasser Alam ; Enrico H. Gerding ; Alex Rogers ; Sarvapali D. Ramchurn
【Abstract】: We present a novel negotiation protocol to facilitate energy exchange between off-grid homes that are equipped with renewable energy generation and electricity storage. Our protocol imposes restrictions over negotiation such that it reduces the complex interdependent multi-issue negotiation to one where agents have a strategy profile in subgame perfect Nash equilibrium. We show that our protocol is concurrent, scalable and; under certain conditions; leads to Pareto-optimal outcomes.
【Keywords】:
【Paper Link】 【Pages】:1105-1112
【Authors】: Haris Aziz ; Serge Gaspers ; Simon Mackenzie ; Nicholas Mattei ; Nina Narodytska ; Toby Walsh
【Abstract】: In this work, we target at the problem of offline sketch parsing, in which the temporal orders of strokes are unavailable. It is more challenging than most of existing work, which usually leverages the temporal information to reduce the search space. Different from traditional approaches in which thousands of candidate groups are selected for recognition, we propose the idea of shapeness estimation to greatly reduce this number in a very fast way. Based on the observation that most of hand-drawn shapes with well-defined closed boundaries can be clearly differentiated from non-shapes if normalized into a very small size, we propose an efficient shapeness estimation method. A compact feature representation as well as its efficient extraction method is also proposed to speed up this process. Based on the proposed shapeness estimation, we present a three-stage cascade framework for offline sketch parsing. The shapeness estimation technique in this framework greatly reduces the number of false positives, resulting in a 96.2% detection rate with only 32 candidate group proposals, which is two orders of magnitude less than existing methods. Extensive experiments show the superiority of the proposed framework over state-of-the-art works on sketch parsing in both effectiveness and efficiency, even though they leveraged the temporal information of strokes.
【Keywords】:
【Paper Link】 【Pages】:1113-1119
【Authors】: Cen Chen ; Shih-Fen Cheng ; Hoong Chuin Lau ; Archan Misra
【Abstract】: In this work, we investigate the problem of large-scale mobile crowdsourcing, where workers are financially motivated to perform location-based tasks physically. Unlike current industry practice that relies on workers to manually pick tasks to perform, we automatically make task recommendation based on workers' historical trajectories and desired time budgets. The challenge of predicting workers' trajectories is that it is faced with uncertainties, as a worker does not take same routes every day. In this work, we depart from deterministic modeling and study the stochastic task recommendation problem where each worker is associated with several predicted routine routes with probabilities. We formulate this problem as a stochastic integer linear program whose goal is to maximize the expected total utility achieved by all workers. We further exploit the separable structures of the formulation and apply the Lagrangian relaxation technique to scale up computation. Experiments have been performed over the instances generated using the real Singapore transportation network. The results show that we can find significantly better solutions than the deterministic formulation.
【Keywords】:
【Paper Link】 【Pages】:1120-1126
【Authors】: Palash Dey ; Y. Narahari
【Abstract】: The margin of victory of an election is a useful measure to capture the robustness of an election outcome. It also plays a crucial role in determining the sample size of various algorithms in post election audit, polling etc. In this work, we present efficient sampling based algorithms for estimating the margin of victory of elections. More formally, we introduce the (c, ε, δ)–MARGIN OF VICTORY problem, where given an election E on n voters, the goal is to estimate the margin of victory M(E) of E within an additive factor of cM(E)+εn. We study the (c, ε, δ)–MARGIN OF VICTORY problem for many commonly used voting rules including scoring rules, approval, Bucklin, maximin, and Copelandα. We observe that even for the voting rules for which computing the margin of victory is NP-Hard, there may exist efficient sampling based algorithms, as observed in the cases of maximin and Copelandα voting rules.
【Keywords】:
【Paper Link】 【Pages】:1127-1133
【Authors】: Nhan-Tam Nguyen ; Dorothea Baumeister ; Jörg Rothe
【Abstract】: We study resource allocation in a model due to Brams and King [2005] and further developed by Baumeister et al. [2014]. Resource allocation deals with the distribution of resources to agents. We assume resources to be indivisible, nonshareable, and of single-unit type. Agents have ordinal preferences over single resources. Using scoring vectors, every ordinal preference induces a utility function. These utility functions are used in conjunction with utilitarian social welfare to assess the quality of allocations of resources to agents. Then allocation correspondences determine the optimal allocations that maximize utilitarian social welfare. Since agents may have an incentive to misreport their true preferences, the question of strategy-proofness is important to resource allocation. We assume that a manipulator has a strictly monotonic and strictly separable linear order on the power set of the resources. We use extension principles (from social choice theory, such as the Kelly and the Gärdenfors extension) for preferences to study manipulation of allocation correspondences. We characterize strategy-proofness of the utilitarian allocation correspondence: It is Gärdenfors/Kelly-strategy-proof if and only if the number of different values in the scoring vector is at most two or the number of occurrences of the greatest value in the scoring vector is larger than half the number of goods.
【Keywords】:
【Paper Link】 【Pages】:1134-1140
【Authors】: Lúcio S. Passos ; Rui Abreu ; Rosaldo J. F. Rossetti
【Abstract】: Diagnosing unwanted behaviour in Multi-Agent Systems (MASs) is crucial to ascertain agents' correct operation. However, generation of MAS models is both error-prone and time intense, as it exponentially increases with the number of agents and their interactions. In this paper, we propose a light-weight, automatic debugging-based technique, coined ESFL-MAS, which shortens the diagnostic process, while only relying on minimal information about the system. ESFL-MAS uses a heuristic that quantifies the suspiciousness of an agent to be faulty; therefore, different heuristics may have different impact on the diagnostic quality. Our experimental evaluation shows that 10 out of 42 heuristics yield the best diagnostic accuracy (96.26% on average).
【Keywords】:
【Paper Link】 【Pages】:1141-1148
【Authors】: Piotr Krzysztof Skowron
【Abstract】: We present a new model that describes the process of electing a group of representatives (e.g., a parliament) for a group of voters. In this model, called the voting committee model, the elected group of representatives runs a number of ballots to make final decisions regarding various issues. The satisfaction of voters comes from the final decisions made by the elected committee. Our results suggest that depending on a single-winner election system used by the committee to make these final decisions, different multi-winner election rules are most suitable for electing the committee. Furthermore, we show that if we allow not only a committee, but also an election rule used to make final decisions, to depend on the voters' preferences, we can obtain an even better representation of the voters.
【Keywords】:
【Paper Link】 【Pages】:1149-1155
【Authors】: Omer Geiger ; Shaul Markovitch
【Abstract】: Given a class of students, and a pool of questions in the domain of study, what subset will constitute a good exam? Millions of educators are dealing with this difficult problem worldwide, yet exams are still composed manually in non-systematic ways. In this work we present a novel algorithmic framework for exam composition. Our framework requires two input components: a student population represented by a distribution over overlay models, each consisting of a set of mastered abilities, or actions; and a target model ordering that, given any two student models, defines which should be given the higher grade. To determine the performance of a student model on a potential question, we test whether it satisfies a disjunctive action landmark, i.e., whether its abilities are sufficient to follow at least one solution path. We present a novel utility function for evaluating exams, using the described components. An exam is highly evaluated if it is expected to order the student population with high correlation to the target order.The merit of our algorithmic framework is exemplified with real auto-generated questions in the domain of middle-school algebra.
【Keywords】:
【Paper Link】 【Pages】:1156-1162
【Authors】: Eric Hsin-Chun Huang ; Jaron Lanier ; Yoav Shoham
【Abstract】: The recent landmark "right to be forgotten" ruling by the EU Court gives EU citizens the right to remove certain links that are "inaccurate, inadequate, irrelevant or excessive" from search results under their names. While we agree with the spirit of the ruling — to empower individuals to manage their personal data while keeping a balance between such right and the freedom of expression, we believe that the ruling is impractical as it provides neither precise criteria for evaluating removal requests nor concrete guidelines for implementation. Consequently, Google's current implementation has several problems concerning scalability, objectivity, and responsiveness. Instead of the right to be forgotten, we propose the right to obscure certain facts about oneself on search engines, and a simple mechanism which respects the spirit of the ruling by giving people more power to influence search results for queries on their names. Specifically, under our proposed mechanism, data subjects will be able to register minus terms, and search results for their name queries that contain such terms would be filtered out. We implement a proof-of-concept search engine following the proposed mechanism, and conduct experiments to explore the influences it might have on users' impressions on different data subjects.
【Keywords】:
【Paper Link】 【Pages】:1163-1169
【Authors】: Guoping Huang ; Jiajun Zhang ; Yu Zhou ; Chengqing Zong
【Abstract】: Computer-aided translation (CAT) system is the most popular tool which helps human translators perform language translation efficiently. To further improve the efficiency, there is an increasing interest in applying the machine translation (MT) technology to upgrade CAT. Post-editing is a standard approach: human translators generate the translation by correcting MT outputs. In this paper, we propose a novel approach deeply integrating MT into CAT systems: a well-designed input method which makes full use of the knowledge adopted by MT systems, such as translation rules, decoding hypotheses and n-best translation lists. Our proposed approach allows human translators to focus on choosing better translation results with less time rather than just complete translation themselves. The extensive experiments demonstrate that our method saves more than 14% time and over 33% keystrokes, and it improves the translation quality as well by more than 3 absolute BLEU scores compared with the strong baseline, i.e., post-editing using Google Pinyin.
【Keywords】:
【Paper Link】 【Pages】:1170-1176
【Authors】: Yifei Lu ; Wei-Long Zheng ; Binbin Li ; Bao-Liang Lu
【Abstract】: In this paper, we adopt a multimodal emotion recognition framework by combining eye movements and electroencephalography (EEG) to enhance emotion recognition. The main contributions of this paper are twofold. a) We investigate sixteen eye movements related to emotions and identify the intrinsic patterns of these eye movements for three emotional states: positive, neutral and negative. b) We examine various modality fusion strategies for integrating users external subconscious behaviors and internal cognitive states and reveal that the characteristics of eye movements and EEG are complementary to emotion recognition. Experiment results demonstrate that modality fusion could significantly improve emotion recognition accuracy in comparison with single modality. The best accuracy achieved by fuzzy integral fusion strategy is 87.59%, whereas the accuracies of solely using eye movements and EEG data are 77.80% and 78.51%, respectively.
【Keywords】:
【Paper Link】 【Pages】:1177-1183
【Authors】: Vittorio Perera ; Manuela M. Veloso
【Abstract】: We contribute a novel approach to understand, dialogue, plan, and execute complex sentences to command a mobile service robot. We define a complex command as a natural language sentence consisting of sensing-based conditionals, conjunctions, and disjunctions. We introduce a flexible template-based algorithm to extract such structure from the parse tree of the sentence. As the complexity of the command increases, extracting the right structure using the template-based algorithm decreases becomes more problematic. We introduce two different dialogue approaches that enable the user to confirm or correct the extracted command structure. We present how the structure used to represent complex commands can be directly used for planning and execution by the service robot. We show results on a corpus of 100 complex commands.
【Keywords】:
【Paper Link】 【Pages】:1184-1192
【Authors】: Sarvapali D. Ramchurn ; Joel E. Fischer ; Yuki Ikuno ; Feng Wu ; Jack Flann ; Antony Waldock
【Abstract】: We consider a setting where a team of humans oversee the coordination of multiple Unmanned Aerial Vehicles (UAVs) to perform a number of search tasks in dynamic environments that may cause the UAVs to drop out. Hence, we develop a set of multi-UAV supervisory control interfaces and a multi-agent coordination algorithm to support human decision making in this setting. To elucidate the resulting interactional issues, we compare manual and mixed-initiative task allocation in both static and dynamic environments in lab studies with 40 participants and observe that our mixed-initiative system results in lower workloads and better performance in re-planning tasks than one which only involves manual task allocation. Our analysis points to new insights into the way humans appropriate flexible autonomy.
【Keywords】:
【Paper Link】 【Pages】:1193-1199
【Authors】: Ke Wang ; Zhendong Su
【Abstract】: Geometry reasoning and proof form a major and challenging component in the K-121 mathematics curriculum. Although several computerized systems exist that help students learn and practice general geometry concepts, they do not target geometry proof problems, which are more advanced and difficult. Powerful geometry theorem provers also exist, however they typically employ advanced algebraic methods and generate complex, difficult to understand proofs, and thus do not meet general K-12 students’ educational needs. This paper tackles these weaknesses of prior systems by introducing a geometry proof system, iGeoTutor, capable of generating human-readable elementary proofs, i.e. proofs using standard Euclidean axioms. We have gathered 77 problems in total from various sources, including ones unsolvable by other systems and from Math competitions. iGeoTutor solves all but two problems in under two minutes each, and more importantly, demonstrates a much more effective and intelligent proof search than prior systems. We have also conducted a pilot study with 12 high school students, and the results show that iGeoTutor provides a clear benefit in helping students learn geometry proofs. We are in active discussions with Khan Academy and local high schools for possible adoption of iGeo-Tutor in real learning environments.
【Keywords】:
【Paper Link】 【Pages】:1200-1207
【Authors】: Jie Wu ; Changhu Wang ; Liqing Zhang ; Yong Rui
【Abstract】: In this work, we target at the problem of offline sketch parsing, in which the temporal orders of strokes are unavailable. It is more challenging than most of existing work, which usually leverages the temporal information to reduce the search space. Different from traditional approaches in which thousands of candidate groups are selected for recognition, we propose the idea of shapeness estimation to greatly reduce this number in a very fast way. Based on the observation that most of hand-drawn shapes with well-defined closed boundaries can be clearly differentiated from non-shapes if normalized into a very small size, we propose an efficient shapeness estimation method. A compact feature representation as well as its efficient extraction method is also proposed to speed up this process. Based on the proposed shapeness estimation, we present a three-stage cascade framework for offline sketch parsing. The shapeness estimation technique in this framework greatly reduces the number of false positives, resulting in a 96.2% detection rate with only 32 candidate group proposals, which is two orders of magnitude less than existing methods. Extensive experiments show the superiority of the proposed framework over state-of-the-art works on sketch parsing in both effectiveness and efficiency, even though they leveraged the temporal information of strokes.
【Keywords】:
【Paper Link】 【Pages】:1208-1214
【Authors】: Siddhartha Banerjee ; Prasenjit Mitra ; Kazunari Sugiyama
【Abstract】: Abstractive summarization is an ideal form of summarization since it can synthesize information from multiple documents to create concise informative summaries. In this work, we aim at developing an abstractive summarizer. First, our proposed approach identifies the most important document in the multi-document set. The sentences in the most important document are aligned to sentences in other documents to generate clusters of similar sentences. Second, we generate K-shortest paths from the sentences in each cluster using a word-graph structure. Finally, we select sentences from the set of shortest paths generated from all the clusters employing a novel integer linear programming (ILP) model with the objective of maximizing information content and readability of the final summary. Our ILP model represents the shortest paths as binary variables and considers the length of the path, information score and linguistic quality score in the objective function. Experimental results on the DUC 2004 and 2005 multi-document summarization datasets show that our proposed approach outperforms all the baselines and state-of-the-art extractive summarizers as measured by the ROUGE scores. Our method also outperforms a recent abstractive summarization technique. In manual evaluation, our approach also achieves promising results on informativeness and readability.
【Keywords】:
【Paper Link】 【Pages】:1215-1221
【Authors】: Francesco Barbieri ; Francesco Ronzano ; Horacio Saggion
【Abstract】: During the last few years, the investigation of methodologies to automatically detect and characterise the figurative traits of textual contents has attracted a growing interest. Indeed, the capability to correctly deal with figurative language and more specifically with satire is fundamental to build robust approaches in several sub-fields of Artificial Intelligence including Sentiment Analysis and Affective Computing. In this paper we investigate the automatic detection of Tweets that advertise satirical news in English, Spanish and Italian. To this purpose we present a system that models Tweets from different languages by a set of language independent features that describe lexical, semantic and usage-related properties of the words of each Tweet. We approach the satire identification problem as binary classification of Tweets as satirical or not satirical messages. We test the performance of our system by performing experiments of both monolingual and cross-language classifications, evaluating the satire detection effectiveness of our features.Our system outperforms a word-based baseline and it is able to recognise if a news in Twitter is satirical or not with good accuracy. Moreover, we analyse the behaviour of the system across the different languages, obtaining interesting results.
【Keywords】:
【Paper Link】 【Pages】:1222-1228
【Authors】: Danushka Bollegala ; Takanori Maehara ; Ken-ichi Kawarabayashi
【Abstract】: Learning representations for semantic relations is important for various tasks such as analogy detection, relational search, and relation classification.Although there have been several proposals for learning representations for individual words,learning word representations that explicitly capture the semantic relations between words remains under developed.We propose an unsupervised method for learning vector representations for words such that the learnt representations are sensitive to the semantic relations that exist between two words.First, we extract lexical patterns from the co-occurrence contexts of two words in a corpus to represent the semantic relations that exist between those two words.Second, we represent a lexical pattern as the weighted sum of the representations of the words that co-occur with that lexical pattern. Third, we train a binary classifier to detect relationally similar versus non-similar lexical pattern pairs.The proposed method is unsupervised in the sense that the lexical pattern pairs we use as train data are automatically sampled from a corpus, without requiring any manual intervention.Our proposed method statistically significantly outperforms the current state-of-the-art word representations on three benchmark datasets for proportional analogy detection, demonstrating its ability to accurately capture the semantic relations among words.
【Keywords】:
【Paper Link】 【Pages】:1229-1235
【Authors】: Felipe Bravo-Marquez ; Eibe Frank ; Bernhard Pfahringer
【Abstract】: We present a supervised framework for expanding an opinion lexicon for tweets. The lexicon contains part-of-speech (POS) disambiguated entries with a three-dimensional probability distribution for positive, negative, and neutral polarities. To obtain this distribution using machine learning, we propose word-level attributes based on POS tags and information calculated from streams of emoticon-annotated tweets. Our experimental results show that our method outperforms the three-dimensional word-level polarity classification performance obtained by semantic orientation, a state-of-the-art measure for establishing world-level sentiment.
【Keywords】:
【Paper Link】 【Pages】:1236-1242
【Authors】: Xinxiong Chen ; Lei Xu ; Zhiyuan Liu ; Maosong Sun ; Huan-Bo Luan
【Abstract】: Most word embedding methods take a word as a basic unit and learn embeddings according to words' external contexts, ignoring the internal structures of words. However, in some languages such as Chinese, a word is usually composed of several characters and contains rich internal information. The semantic meaning of a word is also related to the meanings of its composing characters. Hence, we take Chinese for example, and present a character-enhanced word embedding model (CWE). In order to address the issues of character ambiguity and non-compositional words, we propose multiple-prototype character embeddings and an effective word selection method. We evaluate the effectiveness of CWE on word relatedness computation and analogical reasoning. The results show that CWE outperforms other baseline methods which ignore internal character information.
【Keywords】:
【Paper Link】 【Pages】:1243-1249
【Authors】: Li Dong ; Furu Wei ; Hong Sun ; Ming Zhou ; Ke Xu
【Abstract】: The semantic class (i.e., type) of an entity plays a vital role in many natural language processing tasks, such as question answering. However, most of existing type classification systems extensively rely on hand-crafted features. This paper introduces a hybrid neural model which classifies entity mentions to a wide-coverage set of 22 types derived from DBpedia. It consists of two parts. The mention model uses recurrent neural networks to recursively obtain the vector representation of an entity mention from the words it contains. The context model, on the other hand, employs multilayer perceptrons to obtain the hidden representation for contextual information of a mention. Representations obtained by the two parts are used together to predict the type distribution. Using automatically generated data, these two parts are jointly learned. Experimental studies illustrate that the proposed approach outperforms baseline methods. Moreover, when type information provided by our method is used in a question answering system, we observe a 14.7% relative improvement for the top-1 accuracy of answers.
【Keywords】:
【Paper Link】 【Pages】:1250-1256
【Authors】: Meiping Dong ; Yang Liu ; Huan-Bo Luan ; Maosong Sun ; Tatsuya Izuha ; Dakun Zhang
【Abstract】: While parallel corpora are an indispensable resource for data-driven multilingual natural language processing tasks such as machine translation, they are limited in quantity, quality and coverage. As a result, learning translation models from non-parallel corpora has become increasingly important nowadays, especially for low-resource languages. In this work, we propose a joint model for iteratively learning parallel lexicons and phrases from nonparallel corpora. The model is trained using a Viterbi EM algorithm that alternates between constructing parallel phrases using lexicons and updating lexicons based on the constructed parallel phrases. Experiments on Chinese-English datasets show that our approach learns better parallel lexicons and phrases and improves translation performance significantly.
【Keywords】:
【Paper Link】 【Pages】:1257-1262
【Authors】: Yohei Fusayasu ; Katsuyuki Tanaka ; Tetsuya Takiguchi ; Yasuo Ariki
【Abstract】: In spite of the recent advancements being made in speech recognition, recognition errors are unavoidable in continuous speech recognition. In this paper, we focus on a word-error correction system for continuous speech recognition using confusion networks.Conventional N-gram correction is widely used; however, the performance degrades due to the fact that the N-gram approach cannot measure information between long distance words. In order to improve the performance of the N-gram model, we employ Normalized Relevance Distance (NRD) as a measure for semantic similarity between words. NRD can identify not only co-occurrence but also the correlation of importance of the terms in documents. Even if the words are located far from each other, NRD can estimate the semantic similarity between the words. The effectiveness of our method was evaluated in continuous speech recognition tasks for multiple test speakers. Experimental results show that our error-correction method is the most effective approach as compared to the methods using other features.
【Keywords】:
【Paper Link】 【Pages】:1263-1269
【Abstract】: Text normalization and part-of-speech (POS) tagging for social media data have been investigated recently, however, prior work has treated them separately. In this paper, we propose a joint Viterbi decoding process to determine each token’s POS tag and non-standard token’s correct form at the same time. In order to evaluate our approach, we create two new data sets with POS tag labels and non-standard tokens' correct forms. This is the first data set with such annotation. The experiment results demonstrate the effect of non-standard words on POS tagging, and also show that our proposed methods perform better than the state-of-the-art systems in both POS tagging and normalization.
【Keywords】:
【Paper Link】 【Pages】:1270-1276
【Authors】: Piji Li ; Lidong Bing ; Wai Lam ; Hang Li ; Yi Liao
【Abstract】: We propose a new MDS paradigm called reader-aware multi-document summarization (RA-MDS).Specifically, a set of reader comments associated with the news reports are also collected. The generated summaries from the reports for the event should be salient according to not only the reports but also the reader comments. To tackle this RA-MDS problem, we propose a sparse-coding-based method that is able to calculate the salience of the text units by jointly considering news reports and reader comments. Another reader-aware characteristic of our framework is to improve linguistic quality via entity rewriting. The rewriting consideration is jointly assessed together with other summarization requirements under a unified optimization model. To support the generation of compressive summaries via optimization, we explore a finer syntactic unit, namely, noun/verb phrase. In this work, we also generate a data set for conducting RA-MDS. Extensive experiments on this data set and some classical data sets demonstrate the effectiveness of our proposed approach.
【Keywords】:
【Paper Link】 【Pages】:1277-1283
【Authors】: Biao Liu ; Minlie Huang ; Jiashen Sun ; Xuan Zhu
【Abstract】: Domain adaptation aims at learning robust classifiers across domains using labeled data from a source domain. Representation learning methods, which project the original features to a new feature space, have been proved to be quite effective for this task. However, these unsupervised methods neglect the domain information of the input and are not specialized for the classification task. In this work, we address two key factors to guide the representation learning process for domain adaptation of sentiment classification — one is domain supervision, enforcing the learned representation to better predict the domain of an input, and the other is sentiment supervision which utilizes the source domain sentiment labels to learn sentiment-favorable representations. Experimental results show that these two factors significantly improve the proposed models as expected.
【Keywords】:
【Paper Link】 【Pages】:1284-1290
【Authors】: Pengfei Liu ; Xipeng Qiu ; Xuanjing Huang
【Abstract】: Distributed word representations have a rising interest in NLP community. Most of existing models assume only one vector for each individual word, which ignores polysemy and thus degrades their effectiveness for downstream tasks. To address this problem, some recent work adopts multi-prototype models to learn multiple embeddings per word type. In this paper, we distinguish the different senses of each word by their latent topics. We present a general architecture to learn the word and topic embeddings efficiently, which is an extension to the Skip-Gram model and can model the interaction between words and topics simultaneously. The experiments on the word similarity and text classification tasks show our model outperforms state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:1291-1297
【Authors】: Qian Liu ; Zhiqiang Gao ; Bing Liu ; Yuanlin Zhang
【Abstract】: Aspect extraction aims to extract fine-grained opinion targets from opinion texts. Recent work has shown that the syntactical approach, which employs rules about grammar dependency relations between opinion words and aspects, performs quite well. This approach is highly desirable in practice because it is unsupervised and domain independent. However, the rules need to be carefully selected and tuned manually so as not to produce too many errors. Although it is easy to evaluate the accuracy of each rule automatically, it is not easy to select a set of rules that produces the best overall result due to the overlapping coverage of the rules. In this paper, we propose a novel method to select an effective set of rules. To our knowledge, this is the first work that selects rules automatically. Our experiment results show that the proposed method can select a subset of a given rule set to achieve significantly better results than the full rule set and the existing state-of-the-art CRF-based supervised method.
【Keywords】:
【Paper Link】 【Pages】:1298-1304
【Authors】: Daraksha Parveen ; Michael Strube
【Abstract】: We propose a graph-based method for extractive single-document summarization which considers importance, non-redundancy and local coherence simultaneously. We represent input documents by means of a bipartite graph consisting of sentence and entity nodes. We rank sentences on the basis of importance by applying a graph-based ranking algorithm to this graph and ensure non-redundancy and local coherence of the summary by means of an optimization step. Our graph based method is applied to scientific articles from the journal PLOS Medicine. We use human judgements to evaluate the coherence of our summaries. We compare ROUGE scores and human judgements for coherence of different systems on scientific articles. Our method performs considerably better than other systems on this data. Also, our graph-based summarization technique achieves state-of-the-art results on DUC 2002 data. Incorporating our local coherence measure always achieves the best results.
【Keywords】:
【Paper Link】 【Pages】:1305-1311
【Authors】: Xipeng Qiu ; Xuanjing Huang
【Abstract】: Retrieving similar questions is very important in community-based question answering. A major challenge is the lexical gap in sentence matching. In this paper, we propose a convolutional neural tensor network architecture to encode the sentences in semantic space and model their interactions with a tensor layer. Our model integrates sentence modeling and semantic matching into a single model, which can not only capture the useful information with convolutional and pooling layers, but also learn the matching metrics between the question and its answer. Besides, our model is a general architecture, with no need for the other knowledge such as lexical or syntactic analysis. The experimental results shows that our method outperforms the other methods on two matching tasks.
【Keywords】:
【Paper Link】 【Pages】:1312-1318
【Authors】: Mrinmaya Sachan ; Eduard H. Hovy ; Eric P. Xing
【Abstract】: In this paper, we define the problem of coreference resolution in text as one of clustering with pairwise constraints where human experts are asked to provide pairwise constraints (pairwise judgments of coreferentiality) to guide the clustering process. Positing that these pairwise judgments are easy to obtain from humans given the right context, we show that with significantly lower number of pairwise judgments and feature-engineering effort, we can achieve competitive coreference performance. Further, we describe an active learning strategy that minimizes the overall number of such pairwise judgments needed by asking the most informative questions to human experts at each step of coreference resolution. We evaluate this hypothesis and our algorithms on both entity and event coreference tasks and on two languages.
【Keywords】:
【Paper Link】 【Pages】:1319-1325
【Authors】: Arpit Sharma ; Nguyen Ha Vo ; Somak Aditya ; Chitta Baral
【Abstract】: Concerned about the Turing test's ability to correctly evaluate if a system exhibits human-like intelligence, the Winograd Schema Challenge (WSC) has been proposed as an alternative. A Winograd Schema consists of a sentence and a question. The answers to the questions are intuitive for humans but are designed to be difficult for machines, as they require various forms of commonsense knowledge about the sentence. In this paper we demonstrate our progress towards addressing the WSC. We present an approach that identifies the knowledge needed to answer a challenge question, hunts down that knowledge from text repositories, and then reasons with them to come up with the answer. In the process we develop a semantic parser (www.kparser.org). We show that our approach works well with respect to a subset of Winograd schemas.
【Keywords】:
【Paper Link】 【Pages】:1326-1332
【Authors】: Xiangyan Sun ; Yanghua Xiao ; Haixun Wang ; Wei Wang
【Abstract】: In natural language processing and information retrieval, the bag of words representation is used to implicitly represent the meaning of the text. Implicit semantics, however, are insufficient in supporting text or natural language based interfaces, which are adopted by an increasing number of applications. Indeed, in applications ranging from automatic ontology construction to question answering, explicit representation of semantics is starting to play a more prominent role. In this paper, we introduce the task of conceptual labeling (CL), which aims at generating a minimum set of conceptual labels that best summarize a bag of words. We draw the labels from a data driven semantic network that contains millions of highly connected concepts. The semantic network provides meaning to the concepts, and in turn, it provides meaning to the bag of words through the conceptual labels we generate. To achieve our goal, we use an information theoretic approach to trade-off the semantic coverage of a bag of words against the minimality of the output labels. Specifically, we use Minimum Description Length (MDL) as the criteria in selecting the best concepts. Our extensive experimental results demonstrate the effectiveness of our approach in representing the explicit semantics of a bag of words.
【Keywords】:
【Paper Link】 【Pages】:1333-1339
【Authors】: Yaming Sun ; Lei Lin ; Duyu Tang ; Nan Yang ; Zhenzhou Ji ; Xiaolong Wang
【Abstract】: Given a query consisting of a mention (name string) and a background document,entity disambiguation calls for linking the mention to an entity from reference knowledge base like Wikipedia.Existing studies typically use hand-crafted features to represent mention, context and entity, which is labor-intensive and weak to discover explanatory factors of data.In this paper, we address this problem by presenting a new neural network approach.The model takes consideration of the semantic representations of mention, context and entity, encodes them in continuous vector space and effectively leverages them for entity disambiguation.Specifically, we model variable-sized contexts with convolutional neural network, and embed the positions of context words to factor in the distance between context word and mention.Furthermore, we employ neural tensor network to model the semantic interactions between context and mention.We conduct experiments for entity disambiguation on two benchmark datasets from TAC-KBP 2009 and 2010.Experimental results show that our method yields state-of-the-art performances on both datasets.
【Keywords】:
【Paper Link】 【Pages】:1340-1346
【Authors】: Duyu Tang ; Bing Qin ; Ting Liu ; Yuekui Yang
【Abstract】: We present a neural network method for review rating prediction in this paper. Existing neural network methods for sentiment prediction typically only capture the semantics of texts, but ignore the user who expresses the sentiment.This is not desirable for review rating prediction as each user has an influence on how to interpret the textual content of a review.For example, the same word (e.g. good) might indicate different sentiment strengths when written by different users. We address this issue by developing a new neural network that takes user information into account. The intuition is to factor in user-specific modification to the meaning of a certain word.Specifically, we extend the lexical semantic composition models and introduce a user-word composition vector model (UWCVM), which effectively captures how user acts as a function affecting the continuous word representation. We integrate UWCVM into a supervised learning framework for review rating prediction, andconduct experiments on two benchmark review datasets.Experimental results demonstrate the effectiveness of our method. It shows superior performances over several strong baseline methods.
【Keywords】:
【Paper Link】 【Pages】:1347-1353
【Authors】: Duy-Tin Vo ; Yue Zhang
【Abstract】: Target-dependent sentiment analysis on Twitter has attracted increasing research attention. Most previous work relies on syntax, such as automatic parse trees, which are subject to noise for informal text such as tweets. In this paper, we show that competitive results can be achieved without the use of syntax, by extracting a rich set of automatic features. In particular, we split a tweet into a left context and a right context according to a given target, using distributed word representations and neural pooling functions to extract features. Both sentiment-driven and standard embeddings are used, and a rich set of neural pooling functions are explored. Sentiment lexicons are used as an additional source of information for feature extraction. In standard evaluation, the conceptually simple method gives a 4.8% absolute improvement over the state-of-the-art on three-way targeted sentiment classification, achieving the best reported results for this task.
【Keywords】:
【Paper Link】 【Pages】:1354-1361
【Authors】: Mingxuan Wang ; Zhengdong Lu ; Hang Li ; Qun Liu
【Abstract】: Many tasks in natural language processing, ranging from machine translation to question answering, can be reduced to the problem of matching two sentences or more generally two short texts. We propose a new approach to the problem, called Deep Match Tree (DeepMatch_tree), under a general setting. The approach consists of two components, 1) a mining algorithm to discover patterns for matching two short-texts, defined in the product space of dependency trees, and 2) a deep neural network for matching short texts using the mined patterns, as well as a learning algorithm to build the network having a sparse structure. We test our algorithm on the problem of matching a tweet and a response in social media, a hard matching problem proposed in [Wang et al., 2013], and show that DeepMatch_tree can outperform a number of competitor models including one without using dependency trees and one based on word-embedding, all with large margins.
【Keywords】:
【Paper Link】 【Pages】:1362-1368
【Authors】: Mengjiao Xie ; Yuexian Hou ; Peng Zhang ; Jingfei Li ; Wenjie Li ; Dawei Song
【Abstract】: Recently, a Quantum Language Model (QLM) was proposed to model term dependencies upon Quantum Theory (QT) framework and successively applied in Information Retrieval (IR). Nevertheless, QLM's dependency is based on co-occurrences of terms and has not yet taken into account the Quantum Entanglement (QE), which is a key quantum concept and has a significant cognitive implication. In QT, an entangled state can provide a more complete description for the nature of realities, and determine intrinsic correlations of considered objects globally, rather than those co-occurrences on the surface. It is, however, a real challenge to decide and measure QE using the classical statistics of texts in a post-measurement configuration. In order to circumvent this problem, we theoretically prove the connection between QE and statistically Unconditional Pure Dependence (UPD). Since UPD has an implementable deciding algorithm, we can in turn characterize QE by extracting the UPD patterns from texts. This leads to a measurable QE, based on which we further advance the existing QLM framework. We empirically compare our model with related models, and the results demonstrate the effectiveness of our model.
【Keywords】:
【Paper Link】 【Pages】:1369-1375
【Authors】: Jiaming Xu ; Peng Wang ; Guanhua Tian ; Bo Xu ; Jun Zhao ; Fangyuan Wang ; Hongwei Hao
【Abstract】: Hashing, as a popular approximate nearest neighbor search, has been widely used for large-scale similarity search. Recently, a spectrum of machine learning methods are utilized to learn similarity-preserving binary codes. However, most of them directly encode the explicit features, keywords, which fail to preserve the accurate semantic similarities in binary code beyond keyword matching, especially on short texts. Here we propose a novel text hashing framework with convolutional neural networks. In particular, we first embed the keyword features into compact binary code with a locality preserving constraint. Meanwhile word features and position features are together fed into a convolutional network to learn the implicit features which are further incorporated with the explicit features to fit the pre-trained binary code. Such base method can be successfully accomplished without any external tags/labels, and other three model variations are designed to integrate tags/labels. Experimental results show the superiority of our proposed approach over several state-of-the-art hashing methods when tested on one short text dataset as well as one normal text dataset.
【Keywords】:
【Paper Link】 【Pages】:1376-1382
【Authors】: Jin-ge Yao ; Xiaojun Wan ; Jianguo Xiao
【Abstract】: In this paper, we formulate a sparse optimization framework for extractive document summarization. The proposed framework has a decomposable convex objective function. We derive an efficient ADMM algorithm to solve it. To encourage diversity in the summaries, we explicitly introduce an additional sentence dissimilarity term in the optimization framework. We achieve significant improvement over previous related work under similar data reconstruction framework. We then generalize our formulation to the case of compressive summarization and derive a block coordinate descent algorithm to optimize the objective function. Performance on DUC 2006 and DUC 2007 datasets shows that our compressive summarization results are competitive against the state-of-the-art results while maintaining reasonable readability.
【Keywords】:
【Paper Link】 【Pages】:1383-1389
【Authors】: Wenpeng Yin ; Yulong Pei
【Abstract】: Extractive document summarization aims to conclude given documents by extracting some salient sentences. Often, it faces two challenges: 1) how to model the information redundancy among candidate sentences; 2) how to select the most appropriate sentences. This paper attempts to build a strong summarizer DivSelect+CNNLM by presenting new algorithms to optimize each of them. Concretely, it proposes CNNLM, a novel neural network language model (NNLM) based on convolutional neural network (CNN), to project sentences into dense distributed representations, then models sentence redundancy by cosine similarity. Afterwards, it formulates the selection process as an optimization problem, constructing a diversified selection process (DivSelect) with the aim of selecting some sentences which have high prestige, meantime, are dis-similar with each other. Experimental results on DUC2002 and DUC2004 benchmark data sets demonstrate the effectiveness of our approach.
【Keywords】:
【Paper Link】 【Pages】:1390-1397
【Authors】: Zheng Yu ; Haixun Wang ; Xuemin Lin ; Min Wang
【Abstract】: Hypernymy identification aims at detecting if isA relationship holds between two words or phrases. Most previous methods are based on lexical patterns or the Distributional Inclusion Hypothesis, and the accuracy of such methods is not ideal. In this paper, we propose a simple yet effective supervision framework to identify hypernymy relations using distributed term representations (a.k.a term embeddings). First, we design a distance-margin neural network to learn term embeddings based on some pre-extracted hypernymy data. Then, we apply such embeddings as term features to identify positive hypernymy pairs through a supervision method. Experimental results demonstrate that our approach outperforms other supervised methods on two popular datasets and the learned term embeddings has better quality than existing term distributed representations with respect to hypernymy identification.
【Keywords】:
【Paper Link】 【Pages】:1398-1404
【Authors】: Jiajun Zhang ; Dakun Zhang ; Jie Hao
【Abstract】: Statistical machine translation models have made great progress in improving the translation quality. However, the existing models predict the target translation with only the source- and target-side local context information. In practice, distinguishing good translations from bad ones does not only depend on the local features, but also rely on the global sentence-level information. In this paper, we explore the source-side global sentence-level features for target-side local translation prediction. We propose a novel bilingually-constrained chunk-based convolutional neural network to learn sentence semantic representations. With the sentence-level feature representation, we further design a feed-forward neural network to better predict translations using both local and global information. The large-scale experiments show that our method can obtain substantial improvements in translation quality over the strong baseline: the hierarchical phrase-based translation model augmented with the neural network joint model.
【Keywords】:
【Paper Link】 【Pages】:1405-1411
【Authors】: Wei Zhang ; Jianyong Wang
【Abstract】: User-item connected documents, such as customer reviews for specific items in online shopping website and user tips in location-based social networks, have become more and more prevalent recently. Inferring the topic distributions of user-item connected documents is beneficial for many applications, including document classification and summarization of users and items. While many different topic models have been proposed for modeling multiple text, most of them cannot account for the dual role of user-item connected documents (each document is related to one user and one item simultaneously) in topic distribution generation process. In this paper, we propose a novel probabilistic topic model called Prior-based Dual Additive Latent Dirichlet Allocation (PDA-LDA). It addresses the dual role of each document by associating its Dirichlet prior for topic distribution with user and item topic factors, which leads to a document-level asymmetric Dirichlet prior. In the experiments, we evaluate PDA-LDA on several real datasets and the results demonstrate that our model is effective in comparison to several other models, including held-out perplexity on modeling text and document classification application.
【Keywords】:
【Paper Link】 【Pages】:1412-1418
【Authors】: Yu Zhao ; Zhiyuan Liu ; Maosong Sun
【Abstract】: Incorporating multiple types of relational information from heterogeneous networks has been proved effective in data mining. Although Wikipedia is one of the most famous heterogeneous network, previous works of semantic analysis on Wikipedia are mostly limited on single type of relations. In this paper, we aim at incorporating multiple types of relations to measure the semantic relatedness between Wikipedia entities. We propose a framework of coordinate matrix factorization to construct low-dimensional continuous representation for entities, categories and words in the same semantic space. We formulate this task as the completion of a sparse entity-entity association matrix, in which each entry quantifies the strength of relatedness between corresponding entities. We evaluate our model on the task of judging pair-wise word similarity. Experiment result shows that our model outperforms both traditional entity relatedness algorithms and other representation learning models.
【Keywords】:
【Paper Link】 【Pages】:1419-1425
【Authors】: Guangyou Zhou ; Tingting He ; Wensheng Wu ; Xiaohua Tony Hu
【Abstract】: Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of user generated sentiment data (e.g., reviews, blogs). In real applications, these user generated sentiment data can span so many different domains that it is difficult to manually label training data for all of them. Hence, this paper studies the problem of domain adaptation for sentiment classification where a system trained using labeled reviews from a source domain is deployed to classify sentiments of reviews in a different target domain. In this paper, we propose to link heterogeneous input features with pivots via joint non-negative matrix factorization. This is achieved by learning the domain-specific information from different domains into unified topics, with the help of pivots across all domains. We conduct experiments on a benchmark composed of reviews of 4 types of Amazon products. Experimental results show that our proposed approach significantly outperforms the baseline method, and achieves an accuracy which is competitive with the state-of-the-art methods for sentiment classification adaptation.
【Keywords】:
【Paper Link】 【Pages】:1426-1433
【Authors】: Guangyou Zhou ; Tingting He ; Jun Zhao ; Wensheng Wu
【Abstract】: Cross-lingual sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of data in a label-scarce target language by exploiting labeled data from a label-rich language. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the source language data and that of the target language data. To address this challenge, previous work in the literature mainly relies on the large amount of bilingual parallel corpora to bridge the language gap. In many real applications, however, it is often the case that we have some partial parallel data but it is an expensive and time-consuming job to acquire large amount of parallel data on different languages. In this paper, we propose a novel subspace learning framework by leveraging the partial parallel data for cross-lingual sentiment classification. The proposed approach is achieved by jointly learning the document-aligned review data and un-aligned data from the source language and the target language via a non-negative matrix factorization framework. We conduct a set of experiments with cross-lingual sentiment classification tasks on multilingual Amazon product reviews.Our experimental results demonstrate the efficacy of the proposed cross-lingual approach.
【Keywords】:
【Paper Link】 【Pages】:1434-1441
【Authors】: Daniele Alfarone ; Jesse Davis
【Abstract】: Taxonomies hierarchically organize concepts in a domain. Building and maintaining them by hand is a tedious and time-consuming task. This paper proposes a novel, unsupervised algorithm for automatically learning an IS-A taxonomy from scratch by analyzing a given text corpus. Our approach is designed to deal with infrequently occurring concepts, so it can effectively induce taxonomies even from small corpora. Algorithmically, the approach makes two important contributions. First, it performs inference based on clustering and the distributional semantics, which can capture links among concepts never mentioned together. Second, it uses a novel graph-based algorithm to detect and remove incorrect is-a relations from a taxonomy. An empirical evaluation on five corpora demonstrates the utility of our proposed approach.
【Keywords】:
【Paper Link】 【Pages】:1442-1449
【Authors】: Gregor Behnke ; Denis K. Ponomaryov ; Marvin R. G. Schiller ; Pascal Bercher ; Florian Nothdurft ; Birte Glimm ; Susanne Biundo
【Abstract】: The integration of the various specialized components of cognitive systems poses a challenge, in particular for those architectures that combine planning, inference, and human-computer interaction (HCI). An approach is presented that exploits a single source of common knowledge contained in an ontology. Based upon the knowledge contained in it, specialized domain models for the cognitive systems' components can be generated automatically. Our integration targets planning in the form of hierarchical planning, being well-suited for HCI as it mimics planning done by humans. We show how the hierarchical structures of such planning domains can be (partially) inferred from declarative background knowledge. The same ontology furnishes the structure of the interaction between the cognitive system and the user. First, explanations of plans presented to users are enhanced by ontology explanations. Second, a dialog domain is created from the ontology coherent with the planning domain. We demonstrate the application of our technique in a fitness training scenario.
【Keywords】:
【Paper Link】 【Pages】:1450-1456
【Authors】: Salem Benferhat ; Zied Bouraoui ; Karim Tabia
【Abstract】: Managing inconsistency in DL-Lite knowledge bases where the assertional base is prioritized is a crucial problem in many applications. This is especially true when the assertions are provided by multiple sources having different reliability levels. This paper first reviews existing approaches for selecting preferred repairs. It then focuses on suitable strategies for handling inconsistency in DL-Lite knowledge bases. It proposes new approaches based on the selection of only one preferred repair. These strategies have as a starting point the so-called non-defeated repair and add one of the following principles: deductive closure, consistency, cardinality and priorities. Lastly, we provide a comparative analysis followed by an experimental evaluation of the studied approaches.
【Keywords】:
【Paper Link】 【Pages】:1457-1463
【Authors】: Freddy Lécué
【Abstract】: In dynamic settings where data is exposed by streams, knowledge discovery aims at learning associations of data across streams. In the semantic Web, streams expose their meaning through evolutive versions of ontologies. Such settings pose challenges of scalability for discovering (a posteriori) knowledge. In our work, the semantics, identifying knowledge similarity and rarity in streams, together with incremental, approximate maintenance, control scalability while preserving accuracy of streams associations (as semantic rules) discovery.
【Keywords】:
【Paper Link】 【Pages】:1464-1470
【Authors】: Daniil Mirylenka ; Andrea Passerini ; Luciano Serafini
【Abstract】: Building ontologies is a difficult task requiring skills in logics and ontological analysis. Domain experts usually reach as far as organizing a set of concepts into a hierarchy in which the semantics of the relations is under-specified. The categorization of Wikipedia is a huge concept hierarchy of this form, covering a broad range of areas. We propose an automatic method for bootstrapping domain ontologies from the categories of Wikipedia. The method first selects a subset of concepts that are relevant for a given domain. The relevant concepts are subsequently split into classes and individuals, and, finally, the relations between the concepts are classified into subclass_of, instance_of, part_of, and generic related_to. We evaluate our method by generating ontology skeletons for the domains of Computing and Music. The quality of the generated ontologies has been measured against manually built ground truth datasets of several hundred nodes.
【Keywords】:
【Paper Link】 【Pages】:1471-1478
【Authors】: Chuncheng Xiang ; Baobao Chang ; Zhifang Sui
【Abstract】: Ontology matching is the process of finding semantic correspondences between entities from different ontologies. As an effective solution to linking different heterogeneous ontologies, ontology matching has attracted considerable attentions in recent years. In this paper, we propose a novel graph-based approach to ontology matching problem. Different from previous work, we formulate ontology matching as a random walk process on the association graph constructed from the to-be-matched ontologies. In particular, two variants of the conventional random walk process, namely, Affinity-Preserving Random Walk (APRW) and Mapping-Oriented Random Walk (MORW), have been proposed to alleviate the adverse effect of the false-mapping nodes in the association graph and to incorporate the 1-to-1 matching constraints presumed in ontology matching, respectively. Experiments on the Ontology Alignment Evaluation Initiative (OAEI) datasets show that our approach achieves a competitive performance when compared with state-of-the-art systems, even though our approach does not utilize any external resources.
【Keywords】:
【Paper Link】 【Pages】:1479-1486
【Authors】: Mohammad Abdulaziz ; Michael Norrish ; Charles Gretton
【Abstract】: We eliminate symmetry from a problem before searching for a plan. The planning problem with symmetries is decomposed into a set of isomorphic subproblems. One plan is computed for a small planning problem posed by a descriptive quotient, a description of any such subproblem. A concrete plan is synthesized by concatenating instantiations of that one plan for each subproblem. Our approach is sound.
【Keywords】:
【Paper Link】 【Pages】:1487-1493
【Authors】: Meysam Aghighi ; Christer Bäckström
【Abstract】: Cost-optimal planning (COP) uses action costs and asks for a minimum-cost plan. It is sometimes assumed that there is no harm in using actions with zero cost or rational cost. Classical complexity analysis does not contradict this assumption; planning is PSPACE-complete regardless of whether action costs are positive or non-negative, integer or rational. We thus apply parameterised complexity analysis to shed more light on this issue. Our main results are the following. COP is [W2]-complete for positive integer costs, i.e. it is no harder than finding a minimum-length plan, but it is paraNP-hard if the costs are non-negative integers or positive rationals. This is a very strong indication that the latter cases are substantially harder. Net-benefit planning (NBP) additionally assigns goal utilities and asks for a plan with maximum difference between its utility and its cost. NBP is paraNP-hard even when action costs and utilities are positive integers, suggesting that it is harder than COP. In addition, we also analyse a large number of subclasses, using both the PUBS restrictions and restricting the number of preconditions and effects.
【Keywords】:
【Paper Link】 【Pages】:1494-1501
【Authors】: Natasha Alechina ; Nils Bulling ; Brian Logan ; Hoang Nga Nguyen
【Abstract】: The model-checking problem for Resource Agent Logic is known to be undecidable. We review existing (un)decidability results and identify a significant fragment of the logic for which model checking is decidable. We discuss aspects which makes model checking decidable and prove undecidability of two open fragments over a class of models in which agents always have a choice of doing nothing. We also discuss the effect of structures where each agent always has an option of choosing an action that does not produce or consume resources on the decidability.
【Keywords】:
【Paper Link】 【Pages】:1502-1508
【Authors】: Ron Alford ; Pascal Bercher ; David W. Aha
【Abstract】: Hierarchical Task Network (HTN) planning with Task Insertion (TIHTN planning) is a formalism that hybridizes classical planning with HTN planning by allowing the insertion of operators from outside the method hierarchy. This additional capability has some practical benefits, such as allowing more flexibility for design choices of HTN models: the task hierarchy may be specified only partially, since "missing required tasks" may be inserted during planning rather than prior planning by means of the (predefined) HTN methods. While task insertion in a hierarchical planning setting has already been applied in practice, its theoretical properties have not been studied in detail, yet — only EXPSPACE membership is known so far. We lower that bound proving NEXPTIME-completeness and further prove tight complexity bounds along two axes: whether variables are allowed in method and action schemas, and whether methods must be totally ordered. We also introduce a new planning technique called acyclic progression, which we use to define provably efficient TIHTN planning algorithms.
【Keywords】:
【Paper Link】 【Pages】:1509-1515
【Authors】: Ankit Anand ; Aditya Grover ; Mausam ; Parag Singla
【Abstract】: Monte-Carlo Tree Search (MCTS) algorithms such as UCT are an attractive online framework for solving planning under uncertainty problems modeled as a Markov Decision Process. However, MCTS search trees are constructed in flat state and action spaces, which can lead to poor policies for large problems. In a separate research thread, domain abstraction techniques compute symmetries to reduce the original MDP. This can lead to significant savings in computation, but these have been predominantly implemented for offline planning. This paper makes two contributions. First, we define the ASAP (Abstraction of State-Action Pairs) framework, which extends and unifies past work on domain abstractions by holistically aggregating both states and state-action pairs — ASAP uncovers a much larger number of symmetries in a given domain. Second, we propose ASAP-UCT, which implements ASAP-style abstractions within a UCT framework combining strengths of online planning with domain abstractions. Experimental evaluation on several benchmark domains shows up to 26% improvement in the quality of policies obtained over existing algorithms.
【Keywords】:
【Paper Link】 【Pages】:1516-1522
【Authors】: Spyros Angelopoulos
【Abstract】: This paper addresses two classes of different, yet interrelated optimization problems. The first class of problems involves a robot that must locate a hidden target in an environment that consists of a set of concurrent rays. The second class pertains to the design of interruptible algorithms by means of a schedule of contract algorithms. We study several variants of these families of problems, such as searching and scheduling with probabilistic considerations, redundancy and fault-tolerance issues, randomized strategies, and trade-offs between performance and preemptions. For many of these problems we present the first known results that apply to multi-ray and multi-problem domains. Our objective is to demonstrate that several well-motivated settings can be addressed using a common approach.
【Keywords】:
【Paper Link】 【Pages】:1523-1529
【Authors】: Josef Bajada ; Maria Fox ; Derek Long
【Abstract】: Non-linear continuous change is common in real-world problems, especially those that model physical systems. We present an algorithm which builds upon existent temporal planning techniques based on linear programming to approximate non-linear continuous monotonic functions. These are integrated through a semantic attachment mechanism, allowing external libraries or functions that are difficult to model in native PDDL to be evaluated during the planning process. A new planning system implementing this algorithm was developed and evaluated. Results show that the addition of this algorithm to the planning process can enable it to solve a broader set of planning problems.
【Keywords】:
【Paper Link】 【Pages】:1530-1536
【Authors】: Ronen I. Brafman
【Abstract】: To engage diverse agents in cooperative behavior, it is important, even necessary, to provide algorithms that do not reveal information that is private or proprietary.A number of recent planning algorithms enable agents to plan together for shared goals without disclosing information about their private state and actions. But these algorithms lack clear and formal privacy guarantees: the fact that they do not require agents to explicitly reveal private information, does not imply that such information cannot be deduced. The main contribution of this paper is an enhanced version of the distributed forward-search planning framework of Nissim and Brafman that reveals less information than the original algorithm, and the first, to our knowledge, discussion and formal proof of privacy guarantees for distributed planning and search algorithms.
【Keywords】:
【Paper Link】 【Pages】:1537-1543
【Authors】: Lukás Chrpa ; Fazlul Hasan Siddiqui
【Abstract】: Capturing and exploiting structural knowledge of planning problems has shown to be a successful strategy for making the planning process more efficient. Plans can be decomposed into its constituent coherent subplans, called blocks, that encapsulate some effects and preconditions, reducing interference and thus allowing more deordering of plans. According to the nature of blocks, they can be straightforwardly transformed into useful macro-operators (shortly, macros). Macros are well known and widely studied kind of structural knowledge because they can be easily encoded in the domain model and thus exploited by standard planning engines. In this paper, we introduce a method, called BloMa, that learns domain-specific macros from plans, decomposed into macro-blocks which are extensions of blocks, utilising structural knowledge they capture. In contrast to existing macro learning techniques, macro-blocks are often able to capture high-level activities that form a basis for useful longer macros (i.e. those consisting of more original operators). Our method is evaluated by using the IPC benchmarks with state-of-the-art planning engines, and shows considerable improvement in many cases.
【Keywords】:
【Paper Link】 【Pages】:1544-1550
【Authors】: Lukás Chrpa ; Mauro Vallati ; Thomas Leo McCluskey
【Abstract】: Macro-operator (macro, for short) generation is a well-known technique that is used to speed-up the planning process. Most published work on using macros in automated planning relies on an offline learning phase where training plans, that is, solutions of simple problems, are used to generate the macros. However, there might not always be a place to accommodate training. In this paper we propose OMA, an efficient method for generating useful macros without an offline learning phase, by utilising lessons learnt from existing macro learning techniques. Empirical evaluation with IPC benchmarks demonstrates performance improvement in a range of state-of-the-art planning engines, and provides insights into what macros can be generated without training.
【Keywords】:
【Paper Link】 【Pages】:1551-1557
【Authors】: Liat Cohen ; Solomon Eyal Shimony ; Gera Weiss
【Abstract】: Given a hierarchical plan (or schedule) with uncertain task times, we may need to determine the probability that a given plan will satisfy a given deadline. This problem is shown to be NP-hard for series-parallel hierarchies. We provide a polynomial-time approximation algorithm for it. Computing the expected makespan of an hierarchical plan is also shown to be NP-hard. We examine the approximation bounds empirically and demonstrate where our scheme is superior to sampling and to exact computation.
【Keywords】:
【Paper Link】 【Pages】:1558-1564
【Authors】: Giuseppe De Giacomo ; Moshe Y. Vardi
【Abstract】: In this paper, we study synthesis from logical specifications over finite traces expressed in LTLf and its extension LDLf. Specifically, in this form of synthesis, propositions are partitionedin controllable and uncontrollable ones, and the synthesis task consists of setting the controllable propositions over time so that, in spite of how the value of the uncontrollable ones changes, the specification is fulfilled. Conditional planning in presence of declarative and procedural trajectory constraints is a special case of this form of synthesis. We characterize the problem computationally as 2EXPTIME-complete and present a sound and complete synthesis technique based on DFA (reachability) games.
【Keywords】:
【Paper Link】 【Pages】:1565-1572
【Authors】: Enrique Fernández-González ; Erez Karpas ; Brian C. Williams
【Abstract】: Nowadays, robots are programmed with a mix of discrete and continuous low level behaviors by experts in a very time consuming and expensive process. Existing automated planning approaches are either based on hybrid model predictive control techniques, which do not scale well due to time discretization, or temporal planners, which sacrifice plan expressivity by only supporting discretized fixed rates of change in continuous effects. We introduce Scotty, a mixed discrete-continuous generative planner that finds the middle ground between these two. Scotty can reason with linear time evolving effects whose behaviors can be modified by bounded control variables, with no discretization involved. Our planner exploits the expressivity of flow tubes, which compactly encapsulate continuous effects, and the performance of heuristic forward search. The generated solution plans are better suited for robust execution, as executives can use the flexibility in both time and continuous control variables to react to disturbances.
【Keywords】:
【Paper Link】 【Pages】:1573-1579
【Authors】: Florian Geißer ; Thomas Keller ; Robert Mattmüller
【Abstract】: Most work in planning focuses on tasks with state-independent or even uniform action costs. However, supporting state-dependent action costs admits a more compact representation of many tasks. We investigate how to solve such tasks using heuristic search, with a focus on delete-relaxation heuristics. We first define a generalization of the additive heuristic to such tasks and then discuss different ways of computing it via compilations to tasks with state-independent action costs and more directly by modifying the relaxed planning graph. We evaluate these approaches theoretically and present an implementation of the additive heuristic for planning with state-dependent action costs. To our knowledge, this gives rise to the first approach able to handle even the hardest instances of the combinatorial Academic Advising domain from the International Probabilistic Planning Competition (IPPC) 2014.
【Keywords】:
【Paper Link】 【Pages】:1580-1586
【Authors】: Franc Ivankovic ; Patrik Haslum
【Abstract】: The use of expressive logical axioms to specify derived predicates often allows planning domains to be formulated more compactly and naturally. We consider axioms in the form of a logic program with recursively defined predicates and negation-as-failure, as in PDDL 2.2. We show that problem formulations with axioms are not only more elegant, but can also be easier to solve, because specifying indirect action effects via axioms removes unnecessary choices from the search space of the planner. Despite their potential, however, axioms are not widely supported, particularly by cost-optimal planners. We draw on the connection between planning axioms and answer set programming to derive a consistency-based relaxation, from which we obtain axiom-aware versions of several admissible planning heuristics, such as hmax and pattern database heuristics.
【Keywords】:
【Paper Link】 【Pages】:1587-1593
【Authors】: Bruno Lacerda ; David Parker ; Nick Hawes
【Abstract】: We present a method to calculate cost-optimal policies for co-safe linear temporal logic task specifications over a Markov decision process model of a stochastic system. Our key contribution is to address scenarios in which the task may not be achievable with probability one. We formalise a task progression metric and, using multi-objective probabilistic model checking, generate policies that are formally guaranteed to, in decreasing order of priority: maximise the probability of finishing the task; maximise progress towards completion, if this is not possible; and minimise the expected time or cost required. We illustrate and evaluate our approach in a robot task planning scenario, where the task is to visit a set of rooms that may be inaccessible during execution.
【Keywords】:
【Paper Link】 【Pages】:1594-1600
【Authors】: Jérôme Lang ; Bruno Zanuttini
【Abstract】: We introduce Probabilistic Knowledge-Based Programs (PKBPs), a new, compact representation of policies for factored partially observable Markov decision processes. PKBPs use branching conditions such as if the probability of Φ is larger than p, and many more. While similar in spirit to value-based policies, PKBPs leverage the factored representation for more compactness. They also cope with more general goals than standard state-based rewards, such as pure information-gathering goals. Compactness comes at the price of reactivity, since evaluating branching conditions on-line is not polynomial in general. In this sense, PKBPs are complementary to other representations. Our intended application is as a tool for experts to specify policies in a natural, compact language, then have them verified automatically. We study succinctness and the complexity of verification for PKBPs.
【Keywords】:
【Paper Link】 【Pages】:1601-1609
【Authors】: Christopher H. Lin ; Andrey Kolobov ; Ece Kamar ; Eric Horvitz
【Abstract】: The conventional model for online planning under uncertainty assumes that an agent can stop and plan without incurring costs for the time spent planning. However, planning time is not free in most real-world settings. For example, an autonomous drone is subject to nature's forces, like gravity, even while it thinks, and must either pay a price for counteracting these forces to stay in place, or grapple with the state change caused by acquiescing to them. Policy optimization in these settings requires metareasoning — a process that trades off the cost of planning and the potential policy improvement that can be achieved. We formalize and analyze the metareasoning problem for Markov Decision Processes (MDPs). Our work subsumes previously studied special cases of metareasoning and shows that in the general case, metareasoning is at most polynomially harder than solving MDPs with any given algorithm that disregards the cost of thinking. For reasons we discuss, optimal general metareasoning turns out to be impractical, motivating approximations. We present approximate metareasoning procedures which rely on special properties of the BRTDP planning algorithm and explore the effectiveness of our methods on a variety of problems.
【Keywords】:
【Paper Link】 【Pages】:1610-1616
【Authors】: Nir Lipovetzky ; Miquel Ramírez ; Hector Geffner
【Abstract】: The Atari 2600 games supported in the Arcade Learning Environment [Bellemare et al., 2013] all feature a known initial (RAM) state and actions that have deterministic effects. Classical planners, however, cannot be used off-the-shelf as there is no compact PDDL-model of the games, and action effects and goals are not known a priori. Indeed, there are no explicit goals, and the planner must select actions on line while interacting with a simulator that returns successor states and rewards. None of this precludes the use of blind lookahead algorithms for action selection like breadth-first search or Dijkstra’s yet such methods are not effective over large state spaces. We thus turn to a different class of planning methods introduced recently that have been shown to be effective for solving large planning problems but which do not require prior knowledge of state transitions, costs (rewards) or goals. The empirical results over 54 Atari games show that the simplest such algorithm performs at the level of UCT, the state-of-the-art planning method in this domain, and suggest the potential of width-based methods for planning with simulators when factored, compact action models are not available.
【Keywords】:
【Paper Link】 【Pages】:1617-1623
【Authors】: Ye Liu ; Liqiang Nie ; Lei Han ; Luming Zhang ; David S. Rosenblum
【Abstract】: As compared to simple actions, activities are much more complex, but semantically consistent with a human's real life. Techniques for action recognition from sensor generated data are mature. However, there has been relatively little work on bridging the gap between actions and activities. To this end, this paper presents a novel approach for complex activity recognition comprising of two components. The first component is temporal pattern mining, which provides a mid-level feature representation for activities, encodes temporal relatedness among actions, and captures the intrinsic properties of activities. The second component is adaptive Multi-Task Learning, which captures relatedness among activities and selects discriminant features. Extensive experiments on a real-world dataset demonstrate the effectiveness of our work.
【Keywords】:
【Paper Link】 【Pages】:1624-1630
【Authors】: Fabrice Mayran de Chamisso ; Laurent Soulier ; Michaël Aupetit
【Abstract】: We describe Exploratory Digraph Navigation as a fundamental problem of graph theory concerned with using a graph with incomplete edge and vertex information for navigation in a partially unknown environment. We then introduce EDNA, a simple A extension which provably solves the problem and give worst-case bounds on the number of edges explored by said algorithm. We compare the performance of this algorithm to a non-exploratory strategy using A and discuss its relation to existing algorithms such as D Lite, PHA* with early stopping, EWP or exploration algorithms.
【Keywords】:
【Paper Link】 【Pages】:1631-1637
【Authors】: Andrea Micheli ; Minh Do ; David E. Smith
【Abstract】: Real world temporal planning often involves dealing with uncertainty about the duration of actions. In this paper, we describe a sound-and-complete compilation technique for strong planning that reduces any planning instance with uncertainty in the duration of actions to a plain temporal planning problem without uncertainty. We evaluate our technique by comparing it with a recent technique for PDDL domains with temporal uncertainty. The experimental results demonstrate the practical applicability of our approach and show complementary behavior with respect to previous techniques. We also demonstrate the high expressiveness of the translation by applying it to a significant fragment of the ANML language.
【Keywords】:
【Paper Link】 【Pages】:1638-1644
【Authors】: Sergio Núñez ; Daniel Borrajo ; Carlos Linares López
【Abstract】: Recent work in portfolios of problem solvers has shown their ability to outperform single-algorithm approaches in some tasks (e.g. SAT or Automated Planning). However, not much work has been devoted to a better understanding of the relationship between the order of the component solvers and the performance of the resulting portfolio over time. We propose to sort the component solvers in a sequential portfolio, such that the resulting ordered portfolio maximizes the probability of providing the largest performance at any point in time. We empirically show that our greedy approach efficiently obtains near-optimal performance over time. Also, it generalizes much better than an optimal approach which has been observed to suffer from overfitting.
【Keywords】:
【Paper Link】 【Pages】:1645-1651
【Authors】: Frans Adriaan Oliehoek ; Matthijs T. J. Spaan ; Stefan J. Witwicki
【Abstract】: Nowadays, multiagent planning under uncertainty scales to tens or even hundreds of agents. However, current methods either are restricted to problems with factored value functions, or provide solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions, which would additionally allow for meaningful benchmarking of methods of the latter category. To mitigate this problem, this paper introduces a family of influence-optimistic upper bounds for factored Dec-POMDPs without factored value functions. We demonstrate how we can achieve firm quality guarantees for problems with hundreds of agents.
【Keywords】:
【Paper Link】 【Pages】:1652-1658
【Authors】: Santiago Ontañón ; Michael Buro
【Abstract】: Real-time strategy (RTS) games are hard from an AI point of view because they have enormous state spaces, combinatorial branching factors, allow simultaneous and durative actions, and players have very little time to choose actions. For these reasons, standard game tree search methods such as alpha- beta search or Monte Carlo Tree Search (MCTS) are not sufficient by themselves to handle these games. This paper presents an alternative approach called Adversarial Hierarchical Task Network (AHTN) planning that combines ideas from game tree search with HTN planning. We present the basic algorithm, relate it to existing adversarial hierarchical planning methods, and present new extensions for simultaneous and durative actions to handle RTS games. We also present empirical results for the μRTS game, comparing it to other state of the art search algorithms for RTS games.
【Keywords】:
【Paper Link】 【Pages】:1659-1665
【Authors】: Jussi Rintanen
【Abstract】: Models of temporal planning are complex, due to the possibility of multiple concurrent and mutually interacting actions.This work compares two modeling languages, one with a PDDL-style action exclusion mechanism, and another with an explicit notion of resources, and investigates their implications on constraint-based search. The first mechanism forces temporal gaps in action schedules and have a high performance penalty. The second mechanism avoids the gaps, with dramatically improved performance.
【Keywords】:
【Paper Link】 【Pages】:1666-1672
【Authors】: Diederik Marijn Roijers ; Shimon Whiteson ; Frans A. Oliehoek
【Abstract】: Many sequential decision-making problems require an agent to reason about both multiple objectives and uncertainty regarding the environment's state. Such problems can be naturally modelled as multi-objective partially observable Markov decision processes (MOPOMDPs). We propose optimistic linear support with alpha reuse (OLSAR), which computes a bounded approximation of the optimal solution set for all possible weightings of the objectives. The main idea is to solve a series of scalarized single-objective POMDPs, each corresponding to a different weighting of the objectives. A key insight underlying OLSAR is that the policies and value functions produced when solving scalarized POMDPs in earlier iterations can be reused to more quickly solve scalarized POMDPs in later iterations. We show experimentally that OLSAR outperforms, both in terms of runtime and approximation quality, alternative methods and a variant of OLSAR that does not leverage reuse.
【Keywords】:
【Paper Link】 【Pages】:1673-1681
【Authors】: Enrico Scala ; Pietro Torasso
【Abstract】: The paper faces the problem of plan repair in presence of numeric information, by providing a new method for the intelligent selection of numeric macro actions. The method relies on a generalization of deordering, extended with new conditions accounting for dependencies and threats implied by the numeric components. The deordering is used as a means to infer (hopefully) minimal ordering constraints then used to extract independent and informative macro actions. Each macro aims at compactly representing a sub-solution for the overall planning problem. To verify the feasibility of the approach, the paper reports experiments in various domains from the International Planning Competition% measuring the performance of the new strategy using two state of the art numeric planning systems; i.e., Colin Metric-FF. Results show (i) the competitiveness of the strategy in terms of coverage, time and quality of the resulting plans wrt current approaches, and (ii) the actual independence from the planner employed.
【Keywords】:
【Paper Link】 【Pages】:1682-1688
【Authors】: Lei Song ; Yuan Feng ; Lijun Zhang
【Abstract】: The paper faces the problem of plan repair in presence of numeric information, by providing a new method for the intelligent selection of numeric macro actions. The method relies on a generalization of deordering, extended with new conditions accounting for dependencies and threats implied by the numeric components. The deordering is used as a means to infer (hopefully) minimal ordering constraints then used to extract independent and informative macro actions. Each macro aims at compactly representing a sub-solution for the overall planning problem. To verify the feasibility of the approach, the paper reports experiments in various domains from the International Planning Competition% measuring the performance of the new strategy using two state of the art numeric planning systems; i.e., Colin Metric-FF. Results show (i) the competitiveness of the strategy in terms of coverage, time and quality of the resulting plans wrt current approaches, and (ii) the actual independence from the planner employed.
【Keywords】:
【Paper Link】 【Pages】:1689-1695
【Authors】: Álvaro Torralba ; Jörg Hoffmann
【Abstract】: In optimal planning as heuristic search, admissible pruning techniques are paramount. One idea is dominance pruning, identifying states "better than" other states. Prior approaches are limited to simple dominance notions, like "more STRIPS facts true" or "higher resource supply". We apply simulation, well-known in model checking, to compute much more general dominance relations based on comparing transition behavior across states. We do so effectively by expressing state-space simulations through the composition of simulations on orthogonal projections. We show how simulation can be made more powerful by intertwining it with a notion of label dominance. Our experiments show substantial improvements across several IPC benchmark domains.
【Keywords】:
【Paper Link】 【Pages】:1696-1703
【Authors】: Jorge Torres ; Jorge A. Baier
【Abstract】: Linear temporal logic (LTL) is an expressive language that allows specifying temporally extended goals and preferences. A general approach to dealing with general LTL properties in planning is by ``compiling them away''; i.e., in a pre-processing phase, all LTL formulas are converted into simple, non-temporal formulas that can be evaluated in a planning state. This is accomplished by first generating a finite-state automaton for the formula, and then by introducing new fluents that are used to capture all possible runs of the automaton. Unfortunately, current translation approaches are worst-case exponential on the size of the LTL formula. In this paper, we present a polynomial approach to compiling away LTL goals. Our method relies on the exploitation of alternating automata. Since alternating automata are different from non-deterministic automata, our translation technique does not capture all possible runs in a planning state and thus is very different from previous approaches. We prove that our translation is sound and complete, and evaluate it empirically showing that it has strengths and weaknesses. Specifically, we find classes of formulas in which it seems to outperform significantly the current state of the art.
【Keywords】:
【Paper Link】 【Pages】:1704-1711
【Authors】: Mauro Vallati ; Frank Hutter ; Lukás Chrpa ; Thomas Leo McCluskey
【Abstract】: The development of domain-independent planners within the AI Planning community is leading to “off the shelf” technology that can be used in a wide range of applications. Moreover, it allows a modular approach – in which planners and domain knowledge are modules of larger software applications – that facilitates substitutions or improvements of individual modules without changing the rest of the system. This approach also supports the use of reformulation and configuration techniques, which transform how a model is represented in order to improve the efficiency of plan generation. In this paper, we investigate how the performance of planners is affected by domain model configuration. We introduce a fully automated method for this configuration task, and show in an extensive experimental analysis with six planners and seven domains that this process (which can, in principle, be combined with other forms of reformulation and configuration) can have a remarkable impact on performance across planners. Furthermore, studying the obtained domain model configurations can provide useful information to effectively engineer planning domain models.
【Keywords】:
【Paper Link】 【Pages】:1712-1718
【Authors】: Martin Wehrle ; Malte Helmert ; Alexander Shleyfman ; Michael Katz
【Abstract】: Pruning techniques based on partial order reduction and symmetry elimination have recently found increasing attention for optimal planning. Although these techniques appear to be rather different, they base their pruning decisions on similar ideas from a high level perspective. In this paper, we propose safe integrations of partial order reduction and symmetry elimination for cost-optimal classical planning. We show that previously proposed symmetry-based search algorithms can safely be applied with strong stubborn sets. In addition, we derive the notion of symmetrical strong stubborn sets as a more tightly integrated concept. Our experiments show the potential of our approaches.
【Keywords】:
【Paper Link】 【Pages】:1719-1725
【Authors】: Kyle Hollins Wray ; Shlomo Zilberstein
【Abstract】: We propose a model, Lexicographic Partially Observable Markov Decision Process (LPOMDP), which extends POMDPs with lexicographic preferences over multiple value functions. It allows for slack--slightly less-than-optimal values--for higher-priority preferences to facilitate improvement in lower-priority value functions. Many real life situations are naturally captured by LPOMDPs with slack. We consider a semi-autonomous driving scenario in which time spent on the road is minimized, while maximizing time spent driving autonomously. We propose two solutions to LPOMDPs--Lexicographic Value Iteration (LVI) and Lexicographic Point-Based Value Iteration (LPBVI), establishing convergence results and correctness within strong slack bounds. We test the algorithms using real-world road data provided by Open Street Map (OSM) within 10 major cities. Finally, we present GPU-based optimizations for point-based solvers, demonstrating that their application enables us to quickly solve vastly larger LPOMDPs and other variations of POMDPs.
【Keywords】:
【Paper Link】 【Pages】:1726-1732
【Authors】: Bo Wu ; Craig A. Knoblock
【Abstract】: Programming-by-Example approaches allow users to transform data by simply entering the target data. However, current methods do not scale well to complicated examples, where there are many examples or the examples are long.In this paper, we present an approach that exploits the fact that users iteratively provide examples.It reuses the previous subprograms to improve the efficiency in generating new programs.We evaluated the approach with a variety of transformation scenarios.The results show that the approach significantly reduces the time used to generate the transformation programs, especially in complicated scenarios.
【Keywords】:
【Paper Link】 【Pages】:1733-1741
【Authors】: Daqing Yi ; Michael A. Goodrich ; Kevin D. Seppi
【Abstract】: Many robotic tasks require solutions that maximize multiple performance objectives. For example, in path-planning, these objectives often include finding short paths that avoid risk and maximize the information obtained by the robot. Although there exist many algorithms for multiobjective optimization, few of these algorithms apply directly to robotic path-planning and fewer still are capable of finding the set of Pareto optimal solutions. We present the MORRF(Multi-Objective Rapidly exploring Random Forest) algorithm, which blends concepts from two different types of algorithms from the literature: Optimal rapidly exploring random tree (RRT) for efficient path finding and a decomposition-based approach to multi-objective optimization. The random forest uses two types of tree structures: a set of reference trees and a set of subproblem trees. We present a theoretical analysis that demonstrates that the algorithm asymptotically produces the set of Pareto optimal solutions, and use simulations to demonstrate the effectiveness and efficiency of MORRF in approximating the Pareto set.
【Keywords】:
【Paper Link】 【Pages】:1742-1748
【Authors】: Azin Ashkan ; Branislav Kveton ; Shlomo Berkovsky ; Zheng Wen
【Abstract】: The need for diversification manifests in various recommendation use cases. In this work, we propose a novel approach to diversifying a list of recommended items, which maximizes the utility of the items subject to the increase in their diversity. From a technical perspective, the problem can be viewed as maximization of a modular function on the polytope of a submodular function, which can be solved optimally by a greedy method. We evaluate our approach in an offline analysis, which incorporates a number of baselines and metrics, and in two online user studies. In all the experiments, our method outperforms the baseline methods.
【Keywords】:
【Paper Link】 【Pages】:1749-1755
【Authors】: Susan Craw ; Ben Horsburgh ; Stewart Massie
【Abstract】: Good music recommenders should not only suggest quality recommendations, but should also allow users to discover new/niche music. User studies capture explicit feedback on recommendation quality and novelty, but can be expensive, and may have difficulty replicating realistic scenarios. Lack of effective offline evaluation methods restricts progress in music recommendation research. The challenge is finding suitable measures to score recommendation quality, and in particular avoiding popularity bias, whereby the quality is not recognised when the track is not well known. This paper presents a low cost method that leverages available social media data and shows it to be effective. Not only is it based on explicit feedback from many users, but it also overcomes the popularity bias that disadvantages new/niche music. Experiments show that its findings are consistent with those from an online study with real users. In comparisons with other offline measures, the social media score is shown to be a more reliable proxy for opinions of real users. Its impact on music recommendation is its ability to recognise recommenders that enable discovery, as well as suggest quality recommendations.
【Keywords】:
【Paper Link】 【Pages】:1756-1762
【Authors】: Guang-Neng Hu ; Xin-Yu Dai ; Yunya Song ; Shujian Huang ; Jiajun Chen
【Abstract】: Recommender systems (RSs) provide an effective way of alleviating the information overload problem by selecting personalized choices. Online social networks and user-generated content provide diverse sources for recommendation beyond ratings, which present opportunities as well as challenges for traditional RSs. Although social matrix factorization (Social MF) can integrate ratings with social relations and topic matrix factorization can integrate ratings with item reviews, both of them ignore some useful information. In this paper, we investigate the effective data fusion by combining the two approaches, in two steps. First, we extend Social MF to exploit the graph structure of neighbors. Second, we propose a novel framework MR3 to jointly model these three types of information effectively for rating prediction by aligning latent factors and hidden topics. We achieve more accurate rating prediction on two real-life datasets. Furthermore, we measure the contribution of each data source to the proposed framework.
【Keywords】:
【Paper Link】 【Pages】:1763-1770
【Authors】: Jingyu Hua ; Chang Xia ; Sheng Zhong
【Abstract】: Matrix factorization (MF) is a prevailing collaborative filtering method for building recommender systems. It requires users to upload their personal preferences to the recommender for performing MF, which raises serious privacy concerns. This paper proposes a differentially private MF mechanism that can prevent an untrusted recommender from learning any users' ratings or profiles. Our design decouples computations upon users' private data from the recommender to users, and makes the recommender aggregate local results in a privacy-preserving way. It uses the objective perturbation to make sure that the final item profiles satisfy differential privacy and solves the challenge to decompose the noise component for objective perturbation into small pieces that can be determined locally and independently by users. We also propose a third-party based mechanism to reduce noises added in each iteration and adapt our online algorithm to the dynamic setting that allows users to leave and join. The experiments show that our proposal is efficient and introduces acceptable side effects on the precision of results.
【Keywords】:
【Paper Link】 【Pages】:1771-1777
【Authors】: Liping Jing ; Peng Wang ; Liu Yang
【Abstract】: In recommendation systems, probabilistic matrix factorization (PMF) is a state-of-the-art collaborative filtering method by determining the latent features to represent users and items. However, two major issues limiting the usefulness of PMF are the sparsity problem and long-tail distribution. Sparsity refers to the situation that the observed rating data are sparse, which results in that only part of latent features are informative for describing each item/user. Long tail distribution implies that a large fraction of items have few ratings. In this work, we propose a sparse probabilistic matrix factorization method (SPMF) by utilizing a Laplacian distribution to model the item/user factor vector. Laplacian distribution has ability to generate sparse coding, which is beneficial for SPMF to distinguish the relevant and irrelevant latent features with respect to each item/user. Meanwhile, the tails in Laplacian distribution are comparatively heavy, which is rewarding for SPMF to recommend the tail items. Furthermore, a distributed Gibbs sampling algorithm is developed to efficiently train the proposed sparse probabilistic model. A series of experiments on Netfilix and Movielens datasets have been conducted to demonstrate that SPMF outperforms the existing PMF and its extended version Bayesian PMF (BPMF), especially for the recommendation of tail items.
【Keywords】:
【Paper Link】 【Pages】:1778-1784
【Authors】: Kwan Hui Lim ; Jeffrey Chan ; Christopher Leckie ; Shanika Karunasekera
【Abstract】: Tour recommendation and itinerary planning are challenging tasks for tourists, due to their need to select Points of Interest (POI) to visit in unfamiliar cities, and to select POIs that align with their interest preferences and trip constraints. We propose an algorithm called PersTour for recommending personalized tours using POI popularity and user interest preferences, which are automatically derived from real-life travel sequences based on geo-tagged photos. Our tour recommendation problem is modelled using a formulation of the Orienteering problem, and considers user trip constraints such as time limits and the need to start and end at specific POIs. In our work, we also reflect levels of user interest based on visit durations, and demonstrate how POI visit duration can be personalized using this time-based user interest. Using a Flickr dataset of four cities, our experiments show the effectiveness of PersTour against various baselines, in terms of tour popularity, interest, recall, precision and F1-score. In particular, our results show the merits of using time-based user interest and personalized POI visit durations, compared to the current practice of using frequency-based user interest and average visit durations.
【Keywords】:
【Paper Link】 【Pages】:1785-1791
【Authors】: Xin Liu
【Abstract】: Modeling the evolution of users' preference over time is essential for personalized recommendation. Traditional time-aware models like (1) time-window or recency based approaches ignore or deemphasize much potentially useful information, and (2) time-aware collaborative filtering (CF) approaches largely rely on the information of other users, thus failing to precisely and comprehensively profile individual users for personalization. In this paper, for implicit feedback data, we propose a personalized recommendation model to capture users' dynamic preference using Gaussian process. We first apply topic modeling to represent a user's temporal preference in an interaction as a topic distribution. By aggregating such topic distributions of the user's past interactions, we build her profile, where we treat each topic's values at different interactions as a time series. Gaussian process is then applied to predict the user's preference in the next interactions for top-N recommendation. Experiments conducted over two real datasets demonstrate that our approach outperforms the state-of-the-art recommendation models by at least 42.46% and 66.14% in terms of precision and Mean Reciprocal Rank respectively.
【Keywords】:
【Paper Link】 【Pages】:1792-1798
【Authors】: Yong Liu ; Peilin Zhao ; Aixin Sun ; Chunyan Miao
【Abstract】: Many recommendation tasks are formulated as top-N item recommendation problems based on users' implicit feedback instead of explicit feedback. Here explicit feedback refers to users' ratings to items while implicit feedback is derived from users' interactions with items, e.g., number of times a user plays a song. In this paper, we propose a boosting algorithm named AdaBPR (Adaptive Boosting Personalized Ranking) for top-N item recommendation using users' implicit feedback. In the proposed framework, multiple homogeneous component recommenders are linearly combined to create an ensemble model, for better recommendation accuracy. The component recommenders are constructed based on a fixed collaborative filtering algorithm by using a re-weighting strategy, which assigns a dynamic weight distribution on the observed user-item interactions. AdaBPR demonstrates its effectiveness on three datasets compared with strong baseline algorithms.
【Keywords】:
【Paper Link】 【Pages】:1799-1805
【Authors】: Zebang Shen ; Hui Qian ; Tengfei Zhou ; Song Wang
【Abstract】: In this paper we focus on the greedy matrix completion problem. A simple atom selection strategy is proposed building upon an alternating minimization procedure. Based on this per-iteration strategy, we devise a greedy algorithm OAMC and establish an upper bound of the approximation error. To evaluate different weight refinement methods, several variants of OAMC are designed. We prove that OAMC and three of its variants have the property of linear convergence. Experiments of Recommendation and Image Recovery are conducted to make empirical evaluation. Results are promising. We report that our algorithm takes only 700 seconds to process Yahoo Music dataset in PC, yet achieves a root mean square error 24.5 on test set.
【Keywords】:
【Paper Link】 【Pages】:1806-1812
【Authors】: Georgios Theocharous ; Philip S. Thomas ; Mohammad Ghavamzadeh
【Abstract】: In this paper, we propose a framework for using reinforcement learning (RL) algorithms to learn good policies for personalized ad recommendation (PAR) systems. The RL algorithms take into account the long-term effect of an action, and thus, could be more suitable than myopic techniques like supervised learning and contextual bandit, for modern PAR systems in which the number of returning visitors is rapidly growing. However, while myopic techniques have been well-studied in PAR systems, the RL approach is still in its infancy, mainly due to two fundamental challenges: how to compute a good RL strategy and how to evaluate a solution using historical data to ensure its “safety” before deployment. In this paper, we propose to use a family of off-policy evaluation techniques with statistical guarantees to tackle both these challenges. We apply these methods to a real PAR problem, both for evaluating the final performance and for optimizing the parameters of the RL algorithm. Our results show that a RL algorithm equipped with these off-policy evaluation techniques outperforms the myopic approaches. Our results also give fundamental insights on the difference between the click through rate (CTR) and life-time value (LTV) metrics for evaluating the performance of a PAR algorithm.
【Keywords】:
【Paper Link】 【Pages】:1813-1819
【Authors】: Suhang Wang ; Jiliang Tang ; Yilin Wang ; Huan Liu
【Abstract】: Items in real-world recommender systems exhibit certain hierarchical structures. Similarly, user preferences also present hierarchical structures. Recent studies show that incorporating the explicit hierarchical structures of items or user preferences can improve the performance of recommender systems. However, explicit hierarchical structures are usually unavailable, especially those of user preferences. Thus, there's a gap between the importance of hierarchical structures and their availability. In this paper, we investigate the problem of exploring the implicit hierarchical structures for recommender systems when they are not explicitly available. We propose a novel recommendation framework HSR to bridge the gap, which enables us to capture the implicit hierarchical structures of users and items simultaneously. Experimental results on two real world datasets demonstrate the effectiveness of the proposed framework.
【Keywords】:
【Paper Link】 【Pages】:1820-1826
【Authors】: Xin Wang ; Yunhui Guo ; Congfu Xu
【Abstract】: We generally use hit rate to measure the performance of item recommendation algorithms. In addition to hit rate, we consider another two important factors which are ignored by most previous works. First, whether users are satisfied with the recommended items. It is possible that a user has bought an item but dislikes it. Hence high hit rate does not reflect high customer satisfaction. Second, whether the website retailers are satisfied with the recommendation results. If a customer is interested in two products and wants to buy one of them, it may be better to suggest the item which can help bring more profit. Therefore, a good recommendation algorithm should not only consider improving hit rate but also consider optimizing user satisfaction and website revenue. In this paper, we propose two algorithms for the above purposes and design two modified hit rate based metrics to measure them. Experimental results on 10 real-world datasets show that our methods can not only achieve better hit rate, but improve user satisfaction and website revenue comparing with the state-of-the-art models.
【Keywords】:
【Paper Link】 【Pages】:1827-1834
【Authors】: Xin Xin ; Zhirun Liu ; Chin-Yew Lin ; Heyan Huang ; Xiaochi Wei ; Ping Guo
【Abstract】: Most existing cross-domain recommendation algorithms focus on modeling ratings, while ignoring review texts. The review text, however, contains rich information, which can be utilized to alleviate data sparsity limitations, and interpret transfer patterns. In this paper, we investigate how to utilize the review text to improve cross-domain collaborative filtering models. The challenge lies in the existence of non-linear properties in some transfer patterns. Given this, we extend previous transfer learning models in collaborative filtering, from linear mapping functions to non-linear ones, and propose a cross-domain recommendation framework with the review text incorporated. Experimental verifications have demonstrated, for new users with sparse feedback, utilizing the review text obtains 10% improvement in the AUC metric, and the nonlinear method outperforms the linear ones by 4%.
【Keywords】:
【Paper Link】 【Pages】:1835-1843
【Authors】: Luc De Raedt ; Anton Dries ; Ingo Thon ; Guy Van den Broeck ; Mathias Verbeke
【Abstract】: We study the problem of inducing logic programs in a probabilistic setting, in which both the example descriptions and their classification can be probabilistic. The setting is incorporated in the probabilistic rule learner ProbFOIL+, which combines principles of the rule learner FOIL with ProbLog, a probabilistic Prolog. We illustrate the approach by applying it to the knowledge base of NELL, the Never-Ending Language Learner.
【Keywords】:
【Paper Link】 【Pages】:1844-1851
【Authors】: Parisa Kordjamshidi ; Dan Roth ; Hao Wu
【Abstract】: We present Saul, a new probabilistic programming language designed to address some of the shortcomings of programming languages that aim at advancing and simplifying the development of AI systems. Such languages need to interact with messy, naturally occurring data, to allow a programmer to specify what needs to be done at an appropriate level of abstraction rather than at the data level, to be developed on a solid theory that supports moving to and reasoning at this level of abstraction and, finally, to support flexible integration of these learning and inference models within an application program. Saul is an object-functional programming language written in Scala that facilitates these by (1) allowing a programmer to learn, name and manipulate named abstractions over relational data; (2) supporting seamless incorporation of trainable (probabilistic or discriminative) components into the program, and (3) providing a level of inference over trainable models to support composition and make decisions that respect domain and application constraints. Saul is developed over a declaratively defined relational data model, can use piecewise learned factor graphs with declaratively specified learning and inference objectives, and it supports inference over probabilistic models augmented with declarative knowledge-based constraints.We describe the key constructs of Saul and exemplify its use in developing applications that require relational feature engineering and structured output prediction.
【Keywords】:
【Paper Link】 【Pages】:1852-1858
【Authors】: Jonas Vlasselaer ; Guy Van den Broeck ; Angelika Kimmig ; Wannes Meert ; Luc De Raedt
【Abstract】: Existing techniques for inference in probabilistic logic programs are sequential: they first compute the relevant propositional formula for the query of interest, then compile it into a tractable target representation and finally, perform weighted model counting on the resulting representation. We propose Tp-compilation, a new inference technique based on forward reasoning. Tp-compilation proceeds incrementally in that it interleaves the knowledge compilation step for weighted model counting with forward reasoning on the logic program. This leads to a novel anytime algorithm that provides hard bounds on the inferred probabilities. Furthermore, an empirical evaluation shows that Tp-compilation effectively handles larger instances of complex real-world problems than current sequential approaches, both for exact and for anytime approximate inference.
【Keywords】:
【Paper Link】 【Pages】:1859-1866
【Authors】: Quan Wang ; Bin Wang ; Li Guo
【Abstract】: Knowledge bases (KBs) are often greatly incomplete, necessitating a demand for KB completion. A promising approach is to embed KBs into latent spaces and make inferences by learning and operating on latent representations. Such embedding models, however, do not make use of any rules during inference and hence have limited accuracy. This paper proposes a novel approach which incorporates rules seamlessly into embedding models for KB completion. It formulates inference as an integer linear programming (ILP) problem, with the objective function generated from embedding models and the constraints translated from rules. Solving the ILP problem results in a number of facts which 1) are the most preferred by the embedding models, and 2) comply with all the rules. By incorporating rules, our approach can greatly reduce the solution space and significantly improve the inference accuracy of embedding models. We further provide a slacking technique to handle noise in KBs, by explicitly modeling the noise with slack variables. Experimental results on two publicly available data sets show that our approach significantly and consistently outperforms state-of-the-art embedding models in KB completion. Moreover, the slacking technique is effective in identifying erroneous facts and ambiguous entities, with a precision higher than 90%.
【Keywords】:
【Paper Link】 【Pages】:1867-1873
【Authors】: Kenneth D. Bogert ; Prashant Doshi
【Abstract】: Multi-robot inverse reinforcement learning (mIRL) is broadly useful for learning, from observations, the behaviors of multiple robots executing fixed trajectories and interacting with each other. In this paper, we relax a crucial assumption in IRL to make it better suited for wider robotic applications: we allow the transition functions of other robots to be stochastic and do not assume that the transition error probabilities are known to the learner. Challenged by occlusion where large portions of others' state spaces are fully hidden, we present a new approach that maps stochastic transitions to distributions over features. Then, the underconstrained problem is solved using nonlinear optimization that maximizes entropy to learn the transition function of each robot from occluded observations. Our methods represent significant and first steps toward making mIRL pragmatic.
【Keywords】:
【Paper Link】 【Pages】:1874-1880
【Authors】: Arunkumar Byravan ; Mathew Monfort ; Brian D. Ziebart ; Byron Boots ; Dieter Fox
【Abstract】: Inverse optimal control (IOC) is a powerful approach for learning robotic controllers from demonstration that estimates a cost function which rationalizes demonstrated control trajectories. Unfortunately, its applicability is difficult in settings where optimal control can only be solved approximately. While local IOC approaches have been shown to successfully learn cost functions in such settings, they rely on the availability of good reference trajectories, which might not be available at test time. We address the problem of using IOC in these computationally challenging control tasks by using a graph-based discretization of the trajectory space. Our approach projects continuous demonstrations onto this discrete graph, where a cost function can be tractably learned via IOC. Discrete control trajectories from the graph are then projected back to the original space and locally optimized using the learned cost function. We demonstrate the effectiveness of the approach with experiments conducted on two 7-degree of freedom robotic arms.
【Keywords】:
【Paper Link】 【Pages】:1881-1887
【Authors】: Andreas G. Hofmann ; Enrique Fernández-González ; Justin Helbert ; Scott D. Smith ; Brian C. Williams
【Abstract】: Current motion planners, such as the ones available in ROS MoveIt, can solve difficult motion planning problems. However, these planners are not practical in unstructured, rapidly-changing environments. First, they assume that the environment is well-known, and static during planning and execution. Second, they do not support temporal constraints, which are often important for synchronization between a robot and other actors. Third, because many popular planners generate completely new trajectories for each planning problem, they do not allow for representing persistent control policy information associated with a trajectory across planning problems. We present Chekhov, a reactive, integrated motion planning and execution system that addresses these problems. Chekhov uses a Tube-based Roadmap in which the edges of the roadmap graph are families of trajectories called flow tubes, rather than the single trajectories commonly used in roadmap systems. Flow tubes contain control policy information about how to move through the tube, and also represent the dynamic limits of the system, which imply temporal constraints. This, combined with an incremental APSP algorithm for quickly finding paths in the roadmap graph, allows Chekhov to operate in rapidly changing environments. Testing in simulation, and with a robot testbed has shown improvement in planning speed and motion predictability over current motion planners.
【Keywords】:
【Paper Link】 【Pages】:1888-1894
【Authors】: Yong Li ; Jing Liu ; Yuhang Wang ; Hanqing Lu ; Songde Ma
【Abstract】: In this paper, we propose a weakly supervised Restricted Boltzmann Machines (WRBM) approach to deal with the task of semantic segmentation with only image-level labels available. In WRBM, its hidden nodes are divided into multiple blocks, and each block corresponds to a specific label. Accordingly, semantic segmentation can be directly modeled by learning the mapping from visible layer to the hidden layer of WRBM. Specifically, based on the standard RBM, we import another two terms to make full use of image-level labels and alleviate the effect of noisy labels. First, we expect the hidden response of each superpixel is suppressed on the labels outside its parent image-level label set, and a non-image-level label suppression term is formulated to implicitly import the image-level labels as weak supervision. Second, semantic graph propagation is employed to exploit the cooccurrence between visually similar regions and labels. Besides, we deal with the problems of label imbalance and diverse backgrounds by adapting the block size to the label frequency and appending hidden response blocks corresponding to backgrounds respectively. Extensive experiments on two real-world datasets demonstrate the good performance of our approach compared with some state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:1895-1901
【Authors】: Natalie Parde ; Adam Hair ; Michalis Papakostas ; Konstantinos Tsiakas ; Maria Dagioglou ; Vangelis Karkaletsis ; Rodney D. Nielsen
【Abstract】: Currently, there exists a need for simple, easily-accessible methods with which individuals lacking advanced technical training can expand and customize their robot's knowledge. This work presents a means to satisfy that need, by abstracting the task of training robots to learn about the world around them as a vision- and dialogue-based game, I Spy. In our implementation of I Spy, robots gradually learn about objects and the concepts that describe those objects through repeated gameplay. We show that I Spy is an effective approach for teaching robots how to model new concepts using representations comprised of visual attributes. The results from 255 test games show that the system was able to correctly determine which object the human had in mind 67% of the time. Furthermore, a model evaluation showed that the system correctly understood the visual representations of its learned concepts with an average of 65% accuracy. Human accuracy against the same evaluation standard was just 88% on average.
【Keywords】:
【Paper Link】 【Pages】:1902-1908
【Authors】: Ariel Rosenfeld ; Noa Agmon ; Oleg Maksimov ; Amos Azaria ; Sarit Kraus
【Abstract】: The number of multi-robot systems deployed in field applications has risen dramatically over the years. Nevertheless, supervising and operating multiple robots at once is a difficult task for a single operator to execute. In this paper we propose a novel approach for utilizing advising automated agents when assisting an operator to better manage a team of multiple robots in complex environments. We introduce the Myopic Advice Optimization (MYAO) Problem and exemplify its implementation using an agent for the Search And Rescue (SAR) task. Our intelligent advising agent was evaluated through extensive field trials, with 44 non-expert human operators and 10 low-cost mobile robots, in simulation and physical deployment, and showed a significant improvement in both team performance and the operator’s satisfaction.
【Keywords】:
【Paper Link】 【Pages】:1909-1915
【Authors】: Michael Spranger ; Luc Steels
【Abstract】: This paper reports recent progress on modeling the grounded co-acquisition of syntax and semantics of locative spatial language in developmental robots. Weshow how a learner robot can learn to produce and interpret spatial utterances in guided-learning interactions with a tutor robot (equipped with a system for producing English spatial phrases). The tutor guides the learning process by simplifying the challenges and complexity of utterances, givesfeedback, and gradually increases the complexity of the language to be learnt. Our experiments show promising results towards long-term, incremental acquisition of natural language in a process of co-development of syntax and semantics.
【Keywords】:
【Paper Link】 【Pages】:1916-1922
【Authors】: Pavel Surynek
【Abstract】: Solving cooperative path finding (CPF) by translating it to propositional satisfiability represents a viable option in highly constrained situations. The task in CPF is to relocate agents from their initial positions to given goals in a collision free manner. In this paper, we propose a reduced time expansion that is focused on makespan sub-optimal solving. The suggested reduced time expansion is especially beneficial in conjunction with a goal decomposition where agents are relocated one by one.
【Keywords】:
【Paper Link】 【Pages】:1923-1929
【Authors】: Jesse Thomason ; Shiqi Zhang ; Raymond J. Mooney ; Peter Stone
【Abstract】: Intelligent robots frequently need to understand requests from naive users through natural language. Previous approaches either cannot account for language variation, e.g., keyword search, or require gathering large annotated corpora, which can be expensive and cannot adapt to new variation. We introduce a dialog agent for mobile robots that understands human instructions through semantic parsing, actively resolves ambiguities using a dialog manager, and incrementally learns from human-robot conversations by inducing training data from user paraphrases. Our dialog agent is implemented and tested both on a web interface with hundreds of users via Mechanical Turk and on a mobile robot over several days, tasked with understanding navigation and delivery requests through natural language in an office environment. In both contexts, We observe significant improvements in user satisfaction after learning from conversations.
【Keywords】:
【Paper Link】 【Pages】:1930-1936
【Authors】: Marc Toussaint
【Abstract】: We consider problems of sequential robot manipulation (aka. combined task and motion planning) where the objective is primarily given in terms of a cost function over the final geometric state, rather than a symbolic goal description. In this case we should leverage optimization methods to inform search over potential action sequences. We propose to formulate the problem holistically as a 1st-order logic extension of a mathematical program: a non-linear constrained program over the full world trajectory where the symbolic state-action sequence defines the (in-)equality constraints. We tackle the challenge of solving such programs by proposing three levels of approximation: The coarsest level introduces the concept of the effective end state kinematics, parametrically describing all possible end state configurations conditional to a given symbolic action sequence. Optimization on this level is fast and can inform symbolic search. The other two levels optimize over interaction keyframes and eventually over the full world trajectory across interactions. We demonstrate the approach on a problem of maximizing the height of a physically stable construction from an assortment of boards, cylinders and blocks.
【Keywords】:
【Paper Link】 【Pages】:1937-1944
【Authors】: Xiaoqin Zhang ; Wei Li ; Mingyu Fan ; Di Wang ; Xiuzi Ye
【Abstract】: Visual tracking is an important research topic in computer vision community. Although there are numerous tracking algorithms in the literature, no one performs better than the others under all circumstances, and the best algorithm for a particular dataset may not be known a priori. This motivates a fundamental problem-the necessity of an ensemble learning of different tracking algorithms to overcome their drawbacks and to increase the generalization ability. This paper proposes a multi-modality ranking aggregation framework for fusion of multiple tracking algorithms. In our work, each tracker is viewed as a `ranker' which outputs a rank list of the candidate image patches based on its own appearance model in a particular modality. Then the proposed algorithm aggregates the rankings of different rankers to produce a joint ranking. Moreover, the level of expertise for each "ranker" based on the historical ranking results is also effectively used in our model. The proposed model not only provides a general framework for fusing multiple tracking algorithms on multiple modalities, but also provides a natural way to combine the advantages of the generative model based trackers and the the discriminative model based trackers. It does not need to directly compare the output results obtained by different trackers, and such a comparison is usually heuristic. Extensive experiments demonstrate the effectiveness of our work.
【Keywords】:
【Paper Link】 【Pages】:1945-1951
【Authors】: David A. Cohen ; Martin C. Cooper ; Peter G. Jeavons ; Stanislav Zivny
【Abstract】: The binary Constraint Satisfaction Problem (CSP) is to decide whether there exists an assignment to a set of variables which satisfies specified constraints between pairs of variables. A CSP instance can be presented as a labelled graph (called the microstructure) encoding both the forms of the constraints and where they are imposed. We consider subproblems defined by restricting the allowed form of the microstructure. One form of restriction that has previously been considered is to forbid certain specified substructures (patterns). This captures some tractable classes of the CSP, but does not capture the well-known property of acyclicity. In this paper we introduce the notion of a topological minor of a binary CSP instance. By forbidding certain patterns as topological minors we obtain a compact mechanism for expressing several novel tractable classes, including new generalisations of the class of acyclic instances.
【Keywords】:
【Paper Link】 【Pages】:1952-1958
【Authors】: Jesús Giráldez-Cru ; Jordi Levy
【Abstract】: Nowadays, many industrial SAT instances can be solved efficiently by modern SAT solvers. However, the number of real-world instances is finite. Therefore, the process of development and test of SAT solving techniques can benefit of new models of random formulas that capture more realistically the features of real-world problems. In many works, the structure of industrial instances has been analyzed representing them as graphs and studying some of their properties, like modularity. In this paper, we use modularity, or community structure, to define a new model of pseudo-industrial random SAT instances, called Community Attachment. We prove that the phase transition point, if exists, is independent on the modularity. We evaluate the adequacy of this model to real industrial problems in terms of SAT solvers performance, and show that modern solvers do actually exploit this community structure.
【Keywords】:
【Paper Link】 【Pages】:1959-1965
【Authors】: Chu Min Li ; Felip Manyà
【Abstract】: We describe an exact inference-based algorithm for the MinSAT problem. Given a multiset of clauses Φ, the algorithm derives as many empty clauses as the maximum number of clauses that can be falsified in Φ by applying finitely many times an inference rule, and returns an optimal assignment. We prove the correctness of the algorithm, describe how it can be extended to deal with weighted MinSAT and weighted partial MinSAT instances, analyze the differences between the MaxSAT and MinSAT inference schemes, and define and empirically evaluate the MinSAT Pure Literal Rule.
【Keywords】:
【Paper Link】 【Pages】:1966-1972
【Authors】: João Marques-Silva ; Mikolás Janota ; Alexey Ignatiev ; António Morgado
【Abstract】: Model-Based Diagnosis (MBD) finds a growing number of uses in different settings, which include software fault localization, debugging of spreadsheets, web services, and hardware designs, but also the analysis of biological systems, among many others. Motivated by these different uses, there have been significant improvements made to MBD algorithms in recent years. Nevertheless, the analysis of larger and more complex systems motivates further improvements to existing approaches. This paper proposes a novel encoding of MBD into maximum satisfiability (MaxSAT). The new encoding builds on recent work on using Propositional Satisfiability (SAT) for MBD, but identifies a number of key optimizations that are very effective in practice. The paper also proposes a new set of challenging MBD instances, which can be used for evaluating new MBD approaches. Experimental results obtained on existing and on the new MBD problem instances, show conclusive performance gains over the current state of the art.
【Keywords】:
【Paper Link】 【Pages】:1973-1979
【Authors】: Carlos Mencía ; Alessandro Previti ; João Marques-Silva
【Abstract】: Given an over-constrained system, a Maximal Satisfiable Subset (MSS) denotes a maximal set of constraints that are consistent. A Minimal Correction Subset (MCS, or co-MSS) is the complement of an MSS. MSSes/MCSes find a growing range of practical applications, including optimization, configuration and diagnosis. A number of MCS extraction algorithms have been proposed in recent years, enabling very significant performance gains. This paper builds on earlier work and proposes a finer-grained view of the MCS extraction problem, one that reasons in terms of literals instead of clauses. This view is inspired by the relationship between MCSes and backbones of propositional formulas, which is further investigated, and allows for devising a novel algorithm. Also, the paper develops a number of techniques to approximate (weighted partial) MaxSAT by a selective enumeration of MCSes. Empirical results show substantial improvements over the state of the art in MCS extraction and indicate that MCS-based MaxSAT approximation is very effective in practice.
【Keywords】:
【Paper Link】 【Pages】:1980-1988
【Authors】: Alessandro Previti ; Alexey Ignatiev ; António Morgado ; João Marques-Silva
【Abstract】: Formula compilation by generation of prime implicates or implicants finds a wide range of applications in AI. Recent work on formula compilation by prime implicate/implicant generation often assumes a Conjunctive/Disjunctive Normal Form (CNF/DNF) representation. However, in many settings propositional formulae are naturally expressed in non-clausal form. Despite a large body of work on compilation of non-clausal formulae, in practice existing approaches can only be applied to fairly small formulae, containing at most a few hundred variables. This paper describes two novel approaches for the compilation of non-clausal formulae either with prime implicants or implicates, that is based on propositional Satisfiability (SAT) solving. These novel algorithms also find application when computing all prime implicates of a CNF formula. The proposed approach is shown to allow the compilation of non-clausal formulae of size significantly larger than existing approaches.
【Keywords】:
【Paper Link】 【Pages】:1989-1995
【Authors】: Hugo Gilbert ; Olivier Spanjaard ; Paolo Viappiani ; Paul Weng
【Abstract】: In this paper we adopt Skew Symmetric Bilinear (SSB) utility functions to compare policies in Markov Decision Processes (MDPs). By considering pairs of alternatives, SSB utility theory generalizes von Neumann and Morgenstern's expected utility (EU) theory to encompass rational decision behaviors that EU cannot accommodate. We provide a game-theoretic analysis of the problem of identifying an SSB-optimal policy in finite horizon MDPs and propose an algorithm based on a double oracle approach for computing an optimal (possibly randomized) policy. Finally, we present and discuss experimental results where SSB-optimal policies are computed for a popular TV contest according to several instantiations of SSB utility functions.
【Keywords】:
【Paper Link】 【Pages】:1996-2003
【Authors】: Alkis Gotovos ; Amin Karbasi ; Andreas Krause
【Abstract】: A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies for this general class of adaptive optimization problems can be extremely hard. However, when the objective function is adaptive monotone and adaptive submodular, a simple greedy policy attains a 1-1/e approximation ratio in terms of expected utility. Unfortunately, many practical objective functions are naturally non-monotone; to our knowledge, no existing policy has provable performance guarantees when the assumption of adaptive monotonicity is lifted. We propose the adaptive random greedy policy for maximizing adaptive submodular functions, and prove that it retains the aforementioned 1-1/e approximation ratio for functions that are also adaptive monotone, while it additionally provides a 1/e approximation ratio for non-monotone adaptive submodular functions. We showcase the benefits of adaptivity on three real-world network data sets using two non-monotone functions, representative of two classes of commonly encountered non-monotone objectives.
【Keywords】:
【Paper Link】 【Pages】:2004-2010
【Authors】: Emmanuel Hadoux ; Aurélie Beynier ; Nicolas Maudet ; Paul Weng ; Anthony Hunter
【Abstract】: One prominent way to deal with conflicting view-points among agents is to conduct an argumentative debate: by exchanging arguments, agents can seek to persuade each other. In this paper we investigate the problem, for an agent, of optimizing a sequence of moves to be put forward in a debate, against an opponent assumed to behave stochastically, and equipped with an unknown initial belief state. Despite the prohibitive number of states induced by a naive mapping to Markov models, we show that exploiting several features of such interaction settings allows for optimal resolution in practice, in particular: (1) as debates take place in a public space (or common ground), they can readily be modelled as Mixed Observability Markov Decision Processes, (2) as argumentation problems are highly structured, one can design optimization techniques to prune the initial instance. We report on the experimental evaluation of these techniques.
【Keywords】:
【Paper Link】 【Pages】:2011-2018
【Authors】: Miao Liu ; Christopher Amato ; Xuejun Liao ; Lawrence Carin ; Jonathan P. How
【Abstract】: Expectation maximization (EM) has recently been shown to be an efficient algorithm for learning finite-state controllers (FSCs) in large decentralized POMDPs (Dec-POMDPs). However, current methods use fixed-size FSCs and often converge to maxima that are far from the optimal value. This paper considers a variable-size FSC to represent the local policy of each agent. These variable-size FSCs are constructed using a stick-breaking prior, leading to a new framework called decentralized stick-breaking policy representation (Dec-SBPR). This approach learns the controller parameters with a variational Bayesian algorithm without having to assume that the Dec-POMDP model is available. The performance of Dec-SBPR is demonstrated on several benchmark problems, showing that the algorithm scales to large problems while outperforming other state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:2019-2025
【Authors】: Edith Elkind ; Martin Lackner
【Abstract】: Many hard computational social choice problems are known to become tractable when voters' preferences belong to a restricted domain, such as those of single-peaked or single-crossing preferences. However, to date, all algorithmic results of this type have been obtained for the setting where each voter's preference list is a total order of candidates. The goal of this paper is to extend this line of research to the setting where voters' preferences are dichotomous, i.e., each voter approves a subset of candidates and disapproves the remaining candidates. We propose several analogues of the notions of single-peaked and single-crossing preferences for dichotomous profiles and investigate the relationships among them. We then demonstrate that for some of these notions the respective restricted domains admit efficient algorithms for computationally hard approval-based multi-winner rules.
【Keywords】:
【Paper Link】 【Pages】:2026-2032
【Authors】: David Timothy Lee
【Abstract】: Voting is commonly used as a method for aggregating information in crowdsourcing and human computation. In many settings, one would like to use voting rules which can be efficiently elicited, preserve voter privacy, and are robust to strategic manipulation. In this paper, we give algorithms which elicit approximate winners in a way which provably satisfies all three of these requirements simultaneously. Our results hold for tournament voting rules, which we define to be the voting rules which can be expressed solely as a function of the table of pairwise comparisons containing the number of voters preferring one candidate to another. Tournament voting rules include many common voting rules such as the Borda, Copeland, Maximin, Nanson, Baldwin, Kemeny-Young, Ranked Pairs, Cup, and Schulze voting rules. Our results significantly expand the set of voting rules for which efficient elicitation was known to be possible and improve the known approximation factors for epsilon-strategyproof voting in the regime where the number of candidates is large.
【Keywords】:
【Paper Link】 【Pages】:2033-2039
【Authors】: Lihi Naamani Dery ; Svetlana Obraztsova ; Zinovi Rabinovich ; Meir Kalech
【Abstract】: Manipulation can be performed when intermediate voting results are known; voters might attempt to vote strategically and try and manipulate the results during an iterative voting process. When only partial voting preferences are available, preference elicitation is necessary. In this paper, we combine two approaches of iterative processes: iterative preference elicitation and iterative voting and study the outcome and performance of a setting where manipulative voters submit partial preferences. We provide practical algorithms for manipulation under the Borda voting rule and evaluate those using different voting centers: the Careful voting center that tries to avoid manipulation and the Naive voting center. We show that in practice, manipulation happens in a low percentage of the settings and has a low impact on the final outcome. The Careful voting center reduces manipulation even further.
【Keywords】:
【Paper Link】 【Pages】:2040-2046
【Authors】: Ariel D. Procaccia ; Nisarg Shah ; Eric Sodomka
【Abstract】: Classic social choice theory assumes that votes are independent (but possibly conditioned on an underlying objective ground truth). This assumption is unrealistic in settings where the voters are connected via an underlying social network structure, as social interactions lead to correlated votes. We establish a general framework — based on random utility theory — for ranked voting on a social network with arbitrarily many alternatives (in contrast to previous work, which is restricted to two alternatives). We identify a family of voting rules which, without knowledge of the social network structure, are guaranteed to recover the ground truth with high probability in large networks, with respect to a wide range of models of correlation among input votes.
【Keywords】:
【Paper Link】 【Pages】:2047-2054
【Authors】: Yair Zick ; Yoram Bachrach ; Ian A. Kash ; Peter Key
【Abstract】: We consider revenue negotiation problems in iterative settings. In our model, a group of agentshas some initial resources, used in order to generate revenue. Agents must agree on some way of dividing resources, but there’s a twist. At every time-step, the revenue shares received at time t are agent resources at time t + 1, and the game is repeated. The key issue here is that the way resources are shared has a dramatic effect on long term social welfare, so in order to maximize individual long-term revenue one must consider the welfare of others, a behavior not captured by other models of cooperation and bargaining. Our work focuses on homogeneous production functions. We identify conditions that ensure that the socially optimal outcome is an epsilon-Nash equilibrium. We apply our results to some families of utility functions, and discuss their strategic implications.
【Keywords】:
【Paper Link】 【Pages】:2055-2061
【Authors】: Noga Alon ; Michal Feldman ; Omer Lev ; Moshe Tennenholtz
【Abstract】: We introduce the study of adversarial effects on wisdom of the crowd phenomena. In particular, we examine the ability of an adversary to influence a social network so that the majority of nodes are convinced by a falsehood, using its power to influence a certain fraction, μ < 0.5 of N experts. Can a bad restaurant make a majority of the overall network believe in the quality of that restaurant by misleading a certain share of food critics into believing its food is good, and use the influence of those experts to make a majority of the overall network to believe in the quality of that restaurant? We are interested in providing an agent, which does not necessarily know the graph structure nor who the experts are, to determine the true value of a binary property using a simple majority. We prove bounds on the social graph's maximal degree, which ensure that with a high probability the adversary will fail (and the majority vote will coincide with the true value) when it can choose who the experts are, while each expert communicates the true value with probability p > 0.5. When we examine expander graphs as well as random graphs we prove such bounds even for stronger adversaries, who are able to pick and choose not only who the experts are, but also which ones of them would communicate the wrong values, as long as their proportion is 1-p. Furthermore, we study different propagation models and their effects on the feasibility of obtaining the true value for different adversary types.
【Keywords】:
【Paper Link】 【Pages】:2062-2068
【Authors】: Zhanpeng Fang ; Jie Tang
【Abstract】: The triad is one of the most basic human groups in social networks. Understanding factors affecting the formation of triads will help reveal the underlying mechanisms that govern the emergence and evolution of complex social networks. In this paper, we study an interesting problem of decoding triadic closure in social networks. Specifically, for a given closed triad (a group of three people who are friends with each other), which link was created first, which followed, and which link closed. The problem is challenging, as we may not have any dynamic information. Moreover, the closure processes of different triads are correlated with each other. Our technical contribution lies in the proposal of a probabilistic factor graph model (DeTriad). The model is able to recover the dynamic information in the triadic closure process. It also naturally models the correlations among closed triads. We evaluate the proposed model on a large collaboration network, and the experimental results show that our method improves the accuracy of decoding triadic closure by up to 20% over that of several alternative methods.
【Keywords】:
【Paper Link】 【Pages】:2069-2075
【Authors】: Shanshan Feng ; Xutao Li ; Yifeng Zeng ; Gao Cong ; Yeow Meng Chee ; Quan Yuan
【Abstract】: The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.
【Keywords】:
【Paper Link】 【Pages】:2076-2082
【Authors】: Weixue Lu ; Peng Zhang ; Chuan Zhou ; Chun-Yi Liu ; Li Gao
【Abstract】: Influence maximization plays a key role in social network viral marketing. Although the problem has been widely studied, it is still challenging to estimate influence spread in big networks with hundreds of millions of nodes. Existing heuristic algorithms and greedy algorithms incur heavy computation cost in big networks and are incapable of processing dynamic network structures. In this paper, we propose an incremental algorithm for influence spread estimation in big networks. The incremental algorithm breaks down big networks into small subgraphs ad continuously estimate influence spread on these subgraphs as data streams. The challenge of the incremental algorithm is that subgraphs derived from a big network are not independent and MC simulations on each subgraph (defined as snapshots) may conflict with each other. In this paper, we assume that different combinations of MC simulations on subgraphs on subgraphs generate independent samples. In so doing, the incremental algorithm on streaming subgraphs can estimate influence spread with fewer simulations. Experimental results demonstrates the performance of the proposed algorithm.
【Keywords】:
【Paper Link】 【Pages】:2083-2089
【Authors】: Yulong Pei ; Nilanjan Chakraborty ; Katia P. Sycara
【Abstract】: Community detection on social media is a classic and challenging task. In this paper, we study the problem of detecting communities by combining social relations and user generated content in social networks. We propose a nonnegative matrix tri-factorization (NMTF) based clustering framework with three types of graph regularization. The NMTF based clustering framework can combine the relations and content seamlessly and the graph regularization can capture user similarity, message similarity and user interaction explicitly. In order to design regularization components, we further exploit user similarity and message similarity in social networks. A unified optimization problem is proposed by integrating the NMTF framework and the graph regularization. Then we derive an iterative learning algorithm for this optimization problem. Extensive experiments are conducted on three real-world data sets and the experimental results demonstrate the effectiveness of the proposed method.
【Keywords】:
【Paper Link】 【Pages】:2090-2096
【Authors】: Chengbin Peng ; Zhihua Zhang ; Ka-Chun Wong ; Xiangliang Zhang ; David Keyes
【Abstract】: Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of ''big data,'' traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.
【Keywords】:
【Paper Link】 【Pages】:2097-2103
【Authors】: Vishnu Sankar ; Balaraman Ravindran ; S. Shivashankar
【Abstract】: Real world networks typically exhibit non uniform edge densities with there being a higher concentration of edges within modules or communities. Various scoring functions have been proposed to quantify the quality of such communities. In this paper, we argue that the popular scoring functions suffer from certain limitations. We identify the necessary features that a scoring function should incorporate in order to characterize good community structure and propose a new scoring function, CEIL (Community detection using External and Internal scores in Large networks), which conforms closely with our characterization. We also demonstrate experimentally the superiority of our scoring function over the existing scoring functions. Modularity, a very popular scoring function, exhibits resolution limit, i.e., one cannot find communities that are much smaller in size compared to the size of the network. In many real world networks, community size does not grow in proportion to the network size. This implies that resolution limit is a serious problem in large networks. Modularity is still very popular since it offers many advantages such as fast algorithms for maximizing the score, and non-trivial community structures corresponding to the maxima. We show analytically that the CEIL score does not suffer from resolution limit. We also modify the Louvain method, one of the fastest greedy algorithms for maximizing modularity, to maximize the CEIL score. We show that our algorithm gives the expected communities in synthetic networks as opposed to maximizing modularity. We also show that the community labels given by our algorithm matches closely with the ground truth community labels in real world networks. Our algorithm is on par with Louvain method in computation time and hence scales well to large networks.
【Keywords】:
【Paper Link】 【Pages】:2104-2110
【Authors】: Zhefeng Wang ; Enhong Chen ; Qi Liu ; Yu Yang ; Yong Ge ; Biao Chang
【Abstract】: Social networks, due to their popularity, have been studied extensively these years. A rich body of these studies is related to influence maximization, which aims to select a set of seed nodes for maximizing the expected number of active nodes at the end of the process. However, the set of active nodes can not fully represent the true coverage of information propagation. A node may be informed of the information when any of its neighbours become active and try to activate it, though this node (namely informed node) is still inactive. Therefore, we need to consider both active nodes and informed nodes that are aware of the information when we study the coverage of information propagation in a network. Along this line, in this paper we propose a new problem called Information Coverage Maximization that aims to maximize the expected number of both active nodes and informed ones. After we prove that this problem is NP-hard and submodular in the independent cascade model, we design two algorithms to solve it. Extensive experiments on three real-world data sets demonstrate the performance of the proposed algorithms.
【Keywords】:
【Paper Link】 【Pages】:2111-2117
【Authors】: Cheng Yang ; Zhiyuan Liu ; Deli Zhao ; Maosong Sun ; Edward Y. Chang
【Abstract】: Representation learning has shown its effectiveness in many tasks such as image classification and text mining. Network representation learning aims at learning distributed vector representation for each vertex in a network, which is also increasingly recognized as an important aspect for network analysis. Most network representation learning methods investigate network structures for learning. In reality, network vertices contain rich information (such as text), which cannot be well applied with algorithmic frameworks of typical representation learning methods. By proving that DeepWalk, a state-of-the-art network representation method, is actually equivalent to matrix factorization (MF), we propose text-associated DeepWalk (TADW). TADW incorporates text features of vertices into network representation learning under the framework of matrix factorization. We evaluate our method and various baseline methods by applying them to the task of multi-class classification of vertices. The experimental results show that, our method outperforms other baselines on all three datasets, especially when networks are noisy and training ratio is small.
【Keywords】:
【Paper Link】 【Pages】:2118-2124
【Authors】: Yifeng Zeng ; Xuefeng Chen ; Xin Cao ; Shengchao Qin ; Marc Cavazza ; Yanping Xiang
【Abstract】: The preferences of users are important in route search and planning. For example, when a user plans a trip within a city, their preferences can be expressed as keywords shopping mall, restaurant, and museum, with weights 0.5, 0.4, and 0.1, respectively. The resulting route should best satisfy their weighted preferences. In this paper, we take into account the weighted user preferences in route search, and present a keyword coverage problem, which finds an optimal route from a source location to a target location such that the keyword coverage is optimized and that the budget score satisfies a specified constraint. We prove that this problem is NP-hard. To solve this complex problem, we pro- pose an optimal route search based on an A* variant for which we have defined an admissible heuristic function. The experiments conducted on real-world datasets demonstrate both the efficiency and accu- racy of our proposed algorithms.
【Keywords】:
【Paper Link】 【Pages】:2125-2132
【Authors】: Jiawei Zhang ; Philip S. Yu
【Abstract】: To enjoy more social network services, users nowadays are usually involved in multiple online social media sites at the same time. Across these social networks, users can be connected by both intra-network links (i.e., social links) and inter-network links (i.e., anchor links) simultaneously. In this paper, we want to predict the formation of social links among users in the target network as well as anchor links aligning the target network with other external social networks. The problem is formally defined as the “collective link identification” problem. To solve the collective link identification problem, a unified link prediction framework, CLF (Collective Link Fusion) is proposed in this paper, which consists of two phases: step (1) collective link prediction of anchor and social links, and step (2) propagation of predicted links across the partially aligned “probabilistic networks” with collective random walk. Extensive experiments conducted on two real-world partially aligned networks demonstrate that CLF can perform very well in predicting social and anchor links concurrently.
【Keywords】:
【Paper Link】 【Pages】:2133-2139
【Authors】: Ognjen Arandjelovic ; Duc-Son Pham ; Svetha Venkatesh
【Abstract】: This paper addresses the task of time separated aerial image registration. The ability to solve this problem accurately and reliably is important for a variety of subsequent image understanding applications. The principal challenge lies in the extent and nature of transient appearance variation that a land area can undergo, such as that caused by the change in illumination conditions, seasonal variations, or the occlusion by non-persistent objects (people, cars). Our work introduces several novelties: (i) unlike all previous work on aerial image registration, we approach the problem using a set-based paradigm; (ii) we show how local, pair-wise constraints can be used to enforce a globally good registration using a constraints graph structure; (iii) we show how a simple holistic representation derived from raw aerial images can be used as a basic building block of the constraints graph in a manner which achieves both high registration accuracy and speed. We demonstrate: (i) that the proposed method outperforms the state-of-the-art for pair-wise registration already, achieving greater accuracy and reliability, while at the same time reducing the computational cost of the task; and (ii) that the increase in the number of available images in a set consistently reduces the average registration error.
【Keywords】:
【Paper Link】 【Pages】:2140-2147
【Authors】: Piotr Tadeusz Bilinski ; François Brémond
【Abstract】: In this paper, we propose a new local spatio-temporal descriptor for videos and we propose a new approach for action recognition in videos based on the introduced descriptor. The new descriptor is called the Video Covariance Matrix Logarithm (VCML). The VCML descriptor is based on a covariance matrix representation, and it models relationships between different low-level features, such as intensity and gradient. We apply the VCML descriptor to encode appearance information of local spatio-temporal video volumes, which are extracted by the Dense Trajectories. Then, we present an extensive evaluation of the proposed VCML descriptor with the Fisher vector encoding and the Support Vector Machines on four challenging action recognition datasets. We show that the VCML descriptor achieves better results than the state-of-the-art appearance descriptors. Moreover, we present that the VCML descriptor carries complementary information to the HOG descriptor and their fusion gives a significant improvement in action recognition accuracy. Finally, we show that the VCML descriptor improves action recognition accuracy in comparison to the state-of-the-art Dense Trajectories, and that the proposed approach achieves superior performance to the state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:2148-2154
【Authors】: Ling Cai ; Rongrong Ji ; Wei Liu ; Gang Hua
【Abstract】: Part deformation has been a longstanding challenge for object parsing, of which the primary difficulty lies in modeling the highly diverse object structures. To this end, we propose a novel structure parsing model to capture deformable object structures. The proposed model consists of two de-formable layers: the top layer is an undirected graph that incorporates inter-part deformations to infer object structures; the base layer is consisted of various independent nodes to characterize local intra-part deformations. To learn this two-layer model, we design a layer-wise learning algorithm,which employs matching pursuit and belief propagation for a low computational complexity inference. Specifically, active basis sparse coding is leveraged to build the nodes at the base layer, while the edge weights are estimated by a structural support vector machine. Experimental results on two benchmark datasets (i.e., faces and horses) demonstrate that the proposed model yields superior parsing performance over state-of-the-art models.
【Keywords】:
【Paper Link】 【Pages】:2155-2161
【Authors】: Sheng Li ; Ming Shao ; Yun Fu
【Abstract】: Person re-identification plays an important role in many safety-critical applications. Existing works mainly focus on extracting patch-level features or learning distance metrics. However, the representation power of extracted features might be limited, due to the various viewing conditions of pedestrian images in reality. To improve the representation power of features, we learn discriminative and robust representations via dictionary learning in this paper. First, we propose a cross-view projective dictionary learning (CPDL) approach, which learns effective features for persons across different views. CPDL is a general framework for multi-view dictionary learning. Secondly, by utilizing the CPDL framework, we design two objectives to learn low-dimensional representations for each pedestrian in the patch-level and the image-level, respectively. The proposed objectives can capture the intrinsic relationships of different representation coefficients in various settings. We devise efficient optimization algorithms to solve the objectives. Finally, a fusion strategy is utilized to generate the similarity scores. Experiments on the public VIPeR and CUHK Campus datasets show that our approach achieves the state-of-the-art performance.
【Keywords】:
【Paper Link】 【Pages】:2162-2168
【Authors】: Gaowen Liu ; Yan Yan ; Elisa Ricci ; Yi Yang ; Yahong Han ; Stefan Winkler ; Nicu Sebe
【Abstract】: Recent advances in imaging and multimedia technologies have paved the way for automatic analysis of visual art. Despite notable attempts, extracting relevant patterns from paintings is still a challenging task. Different painters, born in different periods and places, have been influenced by different schools of arts. However, each individual artist also has a unique signature, which is hard to detect with algorithms and objective features. In this paper we propose a novel dictionary learning approach to automatically uncover the artistic style from paintings. Specifically, we present a multi-task learning algorithm to learn a style-specific dictionary representation. Intuitively, our approach, by automatically decoupling style-specific and artist-specific patterns, is expected to be more accurate for retrieval and recognition tasks than generic methods. To demonstrate the effectiveness of our approach, we introduce the DART dataset, containing more than 1.5K images of paintings representative of different styles. Our extensive experimental evaluation shows that our approach significantly outperforms state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:2169-2175
【Authors】: Zhiwu Lu ; Xin Gao ; Songfang Huang ; Liwei Wang ; Ji-Rong Wen
【Abstract】: This paper presents a cross-modal data refinement algorithm for social image parsing, or segmenting all the objects within a social image and then identifying their categories. Different from the traditional fully supervised image parsing that takes pixel-level labels as strong supervisory information, our social image parsing is initially provided with the noisy tags of images (i.e. image-level labels), which are shared by social users. By oversegmenting each image into multiple regions, we formulate social image parsing as a cross-modal data refinement problem over a large set of regions, where the initial labels of each region are inferred from image-level labels. Furthermore, we develop an efficient algorithm to solve such cross-modal data refinement problem. The experimental results on several benchmark datasets show the effectiveness of our algorithm. More notably, our algorithm can be considered to provide an alternative and natural way to address the challenging problem of image parsing, since image-level labels are much easier to access than pixel-level labels.
【Keywords】:
【Paper Link】 【Pages】:2176-2182
【Authors】: Tam Van Nguyen ; Jose Sepulveda
【Abstract】: In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objects. From the objectness map and the foreground map, the compactness map is formed to favor the compact objects. We then derive a saliency measure that produces a pixel-accurate saliency map which uniformly covers the objects of interest and consistently separates fore- and background. We finally evaluate the proposed framework on two challenging datasets, MSRA-1000 and iCoSeg. Our extensive experimental results show that our method outperforms state-of-the-art approaches.
【Keywords】:
【Paper Link】 【Pages】:2183-2190
【Authors】: Li Shen ; Gang Sun ; Zhouchen Lin ; Qingming Huang ; Enhua Wu
【Abstract】: In this paper, we formulate the image classification problem in a multi-task learning framework. We propose a novel method to adaptively share information among tasks (classes). Different from imposing strong assumptions or discovering specific structures, the key insight in our method is to selectively extract and exploit the shared information among classes while capturing respective disparities simultaneously. It is achieved by estimating a composite of two sets of parameters with different regularization. Besides applying it for learning classifiers on pre-computed features, we also integrate the adaptive sharing with deep neural networks, whose discriminative power can be augmented by encoding class relationship. We further develop two strategies for solving the optimization problems in the two scenarios. Empirical results demonstrate that our method can significantly improve the classification performance by transferring knowledge appropriately.
【Keywords】:
【Paper Link】 【Pages】:2191-2197
【Authors】: Zhiqiang Tang ; Yifan Zhang ; Zechao Li ; Hanqing Lu
【Abstract】: In this paper, we investigate the problem of face clustering in real-world videos. In many cases, the distribution of the face data is unbalanced. In movies or TV series videos, the leading casts appear quite often and the others appear much less. However, many clustering algorithms cannot well handle such severe unbalance between the data distribution, resulting in that the large class is split apart, and the small class is merged into the large ones and thus missing. On the other hand, the data distribution proportion information may be known beforehand. For example, we can obtain such information by counting the spoken lines of the characters in the script text. Hence, we propose to make use of the proportion prior to regularize the clustering. A Hidden Conditional Random Field(HCRF) model is presented to incorporate the proportion prior. In experiments on a public data set from real-world videos, we observe improvements on clustering performance against state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:2198-2204
【Authors】: Hongteng Xu ; Yi Zhen ; Hongyuan Zha
【Abstract】: Producing attractive trailers for videos needs human expertise and creativity, and hence is challenging and costly. Different from video summarization that focuses on capturing storylines or important scenes, trailer generation aims at producing trailers that are attractive so that viewers will be eager to watch the original video. In this work, we study the problem of automatic trailer generation, in which an attractive trailer is produced given a video and a piece of music. We propose a surrogate measure of video attractiveness named fixation variance, and learn a novel self-correcting point process-based attractiveness model that can effectively describe the dynamics of attractiveness of a video. Furthermore, based on the attractiveness model learned from existing training trailers, we propose an efficient graph-based trailer generation algorithm to produce a max-attractiveness trailer. Experiments demonstrate that our approach outperforms the state-of-the-art trailer generators in terms of both quality and efficiency.
【Keywords】:
【Paper Link】 【Pages】:2205-2211
【Authors】: Zhiding Yu ; Weiyang Liu ; Wenbo Liu ; Xi Peng ; Zhuo Hui ; B. V. K. Vijaya Kumar
【Abstract】: Transitive distance is an ultrametric with elegant properties for clustering. Conventional transitive distance can be found by referring to the minimum spanning tree (MST). We show that such distance metric can be generalized onto a minimum spanning random forest (MSRF) with element-wise max pooling over the set of transitive distance matrices from an MSRF. Our proposed approach is both intuitively reasonable and theoretically attractive. Intuitively, max pooling alleviates undesired short links with single MST when noise is present. Theoretically, one can see that the distance metric obtained max pooling is still an ultrametric, rendering many good clustering properties. Comprehensive experiments on data clustering and image segmentation show that MSRF with max pooling improves the clustering performance over single MST and achieves state of the art performance on the Berkeley Segmentation Dataset.
【Keywords】:
【Paper Link】 【Pages】:2212-2218
【Authors】: Jun Zhang ; Meng Wang ; Jun Gao ; Yi Wang ; Xudong Zhang ; Xindong Wu
【Abstract】: Although the light field has been recently recognized helpful in saliency detection, it is not comprehensively explored yet. In this work, we propose a new saliency detection model with light field data. The idea behind the proposed model originates from the following observations. (1) People can distinguish regions at different depth levels via adjusting the focus of eyes. Similarly, a light field image can generate a set of focal slices focusing at different depth levels, which suggests that a background can be weighted by selecting the corresponding slice. We show that background priors encoded by light field focusness have advantages in eliminating background distraction and enhancing the saliency by weighting the light field contrast. (2) Regions at closer depth ranges tend to be salient, while far in the distance mostly belong to the backgrounds. We show that foreground objects can be easily separated from similar or cluttered backgrounds by exploiting their light field depth. Extensive evaluations on the recently introduced Light Field Saliency Dataset (LFSD) [Li et al., 2014], including studies of different light field cues and comparisons with Li et al.'s method (the only reported light field saliency detection approach to our knowledge) and the 2D/3D state-of-the-art approaches extended with light field depth/focusness information, show that the investigated light field properties are complementary with each other and lead to improvements on 2D/3D models, and our approach produces superior results in comparison with the state-of-the-art.
【Keywords】:
【Paper Link】 【Pages】:2219-2226
【Authors】: Handong Zhao ; Yun Fu
【Abstract】: Graph-based video segmentation has demonstrated its influential impact from recent works. However, most of the existing approaches fail to make a semantic segmentation of the foreground objects, i.e. all the segmented objects are treated as one class. In this paper, we propose an approach to semantically segment the multi-class foreground objects from a single video sequence. To achieve this, we firstly generate a set of proposals for each frame and score them based on motion and appearance features. With these scores, the similarities between each proposal are measured. To tackle the vulnerability of the graph-based model, low-rank representation with l21-norm regularizer outlier detection is proposed to discover the intrinsic structure among proposals. With the "clean" graph representation, objects of different classes are more likely to be grouped into separated clusters. Two open public datasets MOViCS and ObMiC are used for evaluation under both intersection-over-union and F-measure metrics. The superior results compared with the state-of-the-arts demonstrate the effectiveness of the proposed method.
【Keywords】:
【Paper Link】 【Pages】:2227-2233
【Authors】: Martí Bosch ; Pierre Genevès ; Nabil Layaïda
【Abstract】: The Cascading Style Sheets (CSS) language constitutes a key component of web applications. It offers a series of sophisticated features to stylize web pages. Its apparent simplicity and power are however counter-balanced by the difficulty of debugging and maintaining style sheets, tasks for which developers still lack appropriate tools. In particular, significant portions of CSS code become either useless or redundant, and tend to accumulate over time. The situation becomes even worse as more complex features are added to the CSS language (e.g. CSS3 powerful selectors). A direct consequence is a waste of CPU that is required to display web pages, as well as the significant amount of useless traffic at web scale. Style sheets are designed to operate on a set of documents (possibly generated). However, existing techniques consist in syntax validators, optimizers and runtime debuggers that operate in one particular document instance. As such, they do not provide guarantees concerning all web pages in CSS refactoring, such as preservation of the formatting. This is partly because they are essentially syntactic and do not take advantage of CSS semantics to detect redundancies. We propose a set of automated refactoring techniques aimed at removing redundant and inaccessible declarations and rules, without affecting the layout of any document to which the style sheet is applied. We implemented a prototype that has been extensively tested with popular web sites (such as Google Sites, CNN, Apple, etc.). We show that significant size reduction can be obtained while preserving the code readability and improving maintainability.
【Keywords】:
【Paper Link】 【Pages】:2234-2240
【Authors】: Xiaojun Chang ; Yi Yang ; Alexander G. Hauptmann ; Eric P. Xing ; Yaoliang Yu
【Abstract】: We focus on detecting complex events in unconstrained Internet videos. While most existing works rely on the abundance of labeled training data, we consider a more difficult zero-shot setting where no training data is supplied. We first pre-train a number of concept classifiers using data from other sources. Then we evaluate the semantic correlation of each concept w.r.t. the event of interest. After further refinement to take prediction inaccuracy and discriminative power into account, we apply the discovered concept classifiers on all test videos and obtain multiple score vectors. These distinct score vectors are converted into pairwise comparison matrices and the nuclear norm rank aggregation framework is adopted to seek consensus. To address the challenging optimization formulation, we propose an efficient, highly scalable algorithm that is an order of magnitude faster than existing alternatives. Experiments on recent TRECVID datasets verify the superiority of the proposed approach. We focus on detecting complex events in unconstrained Internet videos. While most existing works rely on the abundance of labeled training data, we consider a more difficult zero-shot setting where no training data is supplied.We first pre-train a number of concept classifiers using data from other sources. Then we evaluate the semantic correlation of each concept w.r.t. the event of interest. After further refinement to take prediction inaccuracy and discriminative power into account, we apply the discovered concept classifiers on all test videos and obtain multiple score vectors. These distinct score vectors are converted into pairwise comparison matrices and the nuclear norm rank aggregation framework is adopted to seek consensus. To address the challenging optimization formulation, we propose an efficient, highly scalable algorithm that is an order of magnitude faster than existing alternatives. Experiments on recent TRECVID datasets verify the superiority of the proposed approach.
【Keywords】:
【Paper Link】 【Pages】:2241-2247
【Authors】: Dustin Dannenhauer ; Héctor Muñoz-Avila
【Abstract】: Goal-driven autonomy (GDA) agents reason about goals while introspectively examining if their course of action matches their expectations. Many GDA agents adopt a hierarchical planning model to generate plans but limit reasoning with expectations to individual actions or projecting the expected state. In this paper we present a relaxation of this limitation. Taking advantage of hierarchical planning principles, our GDA agent elicits expectations that not only validate the next action but the overall plan trajectory without requiring validation against the complete state. We report on (1) a formalization of GDA's expectations that covers trajectories, (2) an implementation of these ideas and (3) benchmarking on two domains used in the GDA literature.
【Keywords】:
【Paper Link】 【Pages】:2248-2254
【Authors】: Qing-Yuan Jiang ; Wu-Jun Li
【Abstract】: Hashing has been widely used for approximate nearest neighbor (ANN) search in big data applications because of its low storage cost and fast retrieval speed. The goal of hashing is to map the data points from the original space into a binary-code space where the similarity (neighborhood structure) in the original space is preserved. By directly exploiting the similarity to guide the hashing code learning procedure, graph hashing has attracted much attention. However, most existing graph hashing methods cannot achieve satisfactory performance in real applications due to the high complexity for graph modeling. In this paper, we propose a novel method, called scalable graph hashing with feature transformation (SGH), for large-scale graph hashing. Through feature transformation, we can effectively approximate the whole graph without explicitly computing the similarity graph matrix, based on which a sequential learning method is proposed to learn the hash functions in a bit-wise manner. Experiments on two datasets with one million data points show that our SGH method can outperform the state-of-the-art methods in terms of both accuracy and scalability.
【Keywords】:
【Paper Link】 【Pages】:2255-2261
【Authors】: Xiao-Yuan Jing ; Qian Liu ; Fei Wu ; Baowen Xu ; Yang-Ping Zhu ; Songcan Chen
【Abstract】: Web page classification has attracted increasing research interest. It is intrinsically a multi-view and semi-supervised application, since web pages usually contain two or more types of data, such a text, hyperlinks and images, and unlabeled pages are generally much more than labeled ones. Web page data is commonly high-dimensional. Thus, how to extract useful features from this kind of data in the multi-view semi-supervised scenario is important for web page classification. To our knowledge, only one method is specially presented for this topic. And with respect to a few semi-supervised multi-view feature extraction methods on other applications, there still exists much room for improvement. In this paper, we firstly design a feature extraction schema called semi-supervised intra-view and inter-view manifold discriminant (SI2MD) learning, which sufficiently utilizes the intra-view and inter-view discriminant information of labeled samples and the local neighborhood structures of unlabeled samples. We then design a semi-supervised uncorrelation constraint for the SI2MD schema to remove the multi-view correlation in the semi-supervised scenario. By combining the SI2MD schema with the constraint, we propose an uncorrelated semi-supervised intra-view and inter-view manifold discriminant (USI2MD) learning approach for web page classification. Experiments on public web page databases validate the proposed approach.
【Keywords】:
【Paper Link】 【Pages】:2262-2269
【Authors】: Andreas Pfandler ; Emanuel Sallinger
【Abstract】: The ability to perform reasoning on inconsistent data is a central problem both for AI and database research. One approach to deal with this situation is consistent query answering, where queries are answered over all possible repairs of the database. In general, the repair may be very distant from the original database. In this work we present a new approach where this distance is bounded and analyze its computational complexity. Our results show that in many (but not all) cases the complexity drops.
【Keywords】:
【Paper Link】 【Pages】:2270-2276
【Authors】: Xiaojun Quan ; Chunyu Kit ; Yong Ge ; Sinno Jialin Pan
【Abstract】: The overwhelming amount of short text data on social media and elsewhere has posed great challenges to topic modeling due to the sparsity problem. Most existing attempts to alleviate this problem resort to heuristic strategies to aggregate short texts into pseudo-documents before the application of standard topic modeling. Although such strategies cannot be well generalized to more general genres of short texts, the success has shed light on how to develop a generalized solution. In this paper, we present a novel model towards this goal by integrating topic modeling with short text aggregation during topic inference. The aggregation is founded on general topical affinity of texts rather than particular heuristics, making the model readily applicable to various short texts. Experimental results on real-world datasets validate the effectiveness of this new model, suggesting that it can distill more meaningful topics from short texts.
【Keywords】:
【Paper Link】 【Pages】:2277-2283
【Authors】: Kaisong Song ; Shi Feng ; Wei Gao ; Daling Wang ; Ge Yu ; Kam-Fai Wong
【Abstract】: Sentiment expression in microblog posts often reflects user's specific individuality due to different language habit, personal character, opinion bias and so on. Existing sentiment classification algorithms largely ignore such latent personal distinctions among different microblog users. Meanwhile, sentiment data of microblogs are sparse for individual users, making it infeasible to learn effective personalized classifier. In this paper, we propose a novel, extensible personalized sentiment classification method based on a variant of latent factor model to capture personal sentiment variations by mapping users and posts into a low-dimensional factor space. We alleviate the sparsity of personal texts by decomposing the posts into words which are further represented by the weighted sentiment and topic units based on a set of syntactic units of words obtained from dependency parsing results. To strengthen the representation of users, we leverage users following relation to consolidate the individuality of a user fused from other users with similar interests. Results on real-world microblog datasets confirm that our method outperforms state-of-the-art baseline algorithms with large margins.
【Keywords】:
【Paper Link】 【Pages】:2284-2290
【Authors】: Ji Wan ; Pengcheng Wu ; Steven C. H. Hoi ; Peilin Zhao ; Xingyu Gao ; Dayong Wang ; Yongdong Zhang ; Jintao Li
【Abstract】: A major challenge in Content-Based Image Retrieval (CBIR) is to bridge the semantic gap between low-level image contents and high-level semantic concepts. Although researchers have investigated a variety of retrieval techniques using different types of features and distance functions, no single best retrieval solution can fully tackle this challenge. In a real-world CBIR task, it is often highly desired to combine multiple types of different feature representations and diverse distance measures in order to close the semantic gap. In this paper, we investigate a new framework of learning to rank for CBIR, which aims to seek the optimal combination of different retrieval schemes by learning from large-scale training data in CBIR. We first formulate the problem formally as a learning to rank task, which can be solved in general by applying the existing batch learning to rank algorithms from text information retrieval (IR). To further address the scalability towards large-scale online CBIR applications, we present a family of online learning to rank algorithms, which are significantly more efficient and scalable than classical batch algorithms for large-scale online CBIR. Finally, we conduct an extensive set of experiments, in which encouraging results show that our technique is effective, scalable and promising for large-scale CBIR.
【Keywords】:
【Paper Link】 【Pages】:2291-2297
【Authors】: Daixin Wang ; Peng Cui ; Mingdong Ou ; Wenwu Zhu
【Abstract】: Hashing is an important method for performing efficient similarity search. With the explosive growth of multimodal data, how to learn hashing-based compact representations for multimodal data becomes highly non-trivial. Compared with shallow structured models, deep models present superiority in capturing multimodal correlations due to their high nonlinearity. However, in order to make the learned representation more accurate and compact, how to reduce the redundant information lying in the multimodal representations and incorporate different complexities of different modalities in the deep models is still an open problem. In this paper, we propose a novel deep multimodal hashing method, namely Deep Multimodal Hashing with Orthogonal Regularization (DMHOR), which fully exploits intra-modality and inter-modality correlations. In particular, to reduce redundant information, we impose orthogonal regularizer on the weighting matrices of the model, and theoretically prove that the learned representation is guaranteed to be approximately orthogonal. Moreover, we find that a better representation can be attained with different numbers of layers for different modalities, due to their different complexities. Comprehensive experiments on WIKI and NUS-WIDE, demonstrate a substantial gain of DMHOR compared with state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:2298-2304
【Authors】: Zhe Wang ; Ling-Yu Duan ; Jie Lin ; Xiaofang Wang ; Tiejun Huang ; Wen Gao
【Abstract】: Hashing is one of the effective techniques for fast Approximate Nearest Neighbour (ANN) search. Traditional single-bit quantization (SBQ) in most hashing methods incurs lots of quantization error which seriously degrades the search performance. To address the limitation of SBQ, researchers have proposed promising multi-bit quantization (MBQ) methods to quantize each projection dimension with multiple bits. However, some MBQ methods need to adopt specific distance for binary code matching instead of the original Hamming distance, which would significantly decrease the retrieval speed. Two typical MBQ methods Hierarchical Quantization and Double Bit Quantization retain the Hamming distance, but both of them only consider the projection dimensions during quantization, ignoring the neighborhood structure of raw data inherent in Euclidean space. In this paper, we propose a multi-bit quantization method named Hamming Compatible Quantization (HCQ) to preserve the capability of similarity metric between Euclidean space and Hamming space by utilizing the neighborhood structure of raw data. Extensive experiment results have shown our approach significantly improves the performance of various state-of-the-art hashing methods while maintaining fast retrieval speed.
【Keywords】:
【Paper Link】 【Pages】:2305-2312
【Authors】: Tao Wu ; Qifan Wang ; Zhiwei Zhang ; Luo Si
【Abstract】: Automatically identifying the research areas of academic/industry researchers is an important task for building expertise organizations or search systems. In general, this task can be viewed as text classification that generates a set of research areas given the expertise of a researcher like documents of publications. However, this task is challenging because the evidence of a research area may only exist in a few documents instead of all documents. Moreover, the research areas are often organized in a hierarchy, which limits the effectiveness of existing text categorization methods. This paper proposes a novel approach, Multi-instance Learning of Hierarchical Multi-label Classification Model (MIHML) for the task, which effectively identifies multiple research areas in a hierarchy from individual documents within the profile of a researcher. An Expectation-Maximization (EM) optimization algorithm is designed to learn the model parameters. Extensive experiments have been conducted to demonstrate the superior performance of proposed research with a real world application.
【Keywords】:
【Paper Link】 【Pages】:2313-2319
【Authors】: Djallel Bouneffouf ; Inanç Birol
【Abstract】: The Nystrom method provides an efficient sampling approach for large scale clustering problems, by generating a low-rank matrix approximation. However, existing sampling methods are limited by accuracy and computing time. This paper proposes an improved Nystrom-based clustering algorithm with a new sampling procedure, Minimum Sum of Squared Similarities (MSSS). Experiments on synthetic and real data sets show that the proposed sampling performs with higher accuracy than existing algorithms, applied to Nystrom-based spectral clustering problems. Furthermore, we provide a theoretical analysis that allows us to define the upper bound of the Frobenius norm error of the MSSS.
【Keywords】:
【Paper Link】 【Pages】:2320-2326
【Authors】: Danish Contractor ; Bhupesh Chawda ; Sameep Mehta ; L. Venkata Subramaniam ; Tanveer A. Faruquie
【Abstract】: In recent times, social media has become a popular medium for many election campaigns. It not only allows candidates to reach out to a large section of the electorate, it is also a potent medium for people to express their opinion on the proposed policies and promises of candidates. Analyzing social media data is challenging as the text can be noisy, sparse and even multilingual. In addition, the information may not be completely trustworthy, particularly in the presence of propaganda, promotions and rumors. In this paper we describe our work for analyzing election campaigns using social media data. Using data from the 2012 US presidential elections and the 2013 Philippines General elections, we provide detailed experiments on our methods that use granger causality to identify topics that were most “causal” for public opinion and which in turn, give an interpretable insight into “elections topics” that were most important. Our system was deployed by the largest media organization in the Philippines during the 2013 General elections and using our work, the media house able to identify and report news stories much faster than competitors and reported higher TRP ratings during the election.
【Keywords】:
【Paper Link】 【Pages】:2327-2333
【Authors】: Xiao Ding ; Yue Zhang ; Ting Liu ; Junwen Duan
【Abstract】: We propose a deep learning method for event-driven stock market prediction. First, events are extracted from news text, and represented as dense vectors, trained using a novel neural tensor network. Second, a deep convolutional neural network is used to model both short-term and long-term influences of events on stock price movements. Experimental results show that our model can achieve nearly 6% improvements on S&P 500 index prediction and individual stock prediction, respectively, compared to state-of-the-art baseline methods. In addition, market simulation results show that our system is more capable of making profits than previously reported systems trained on S&P 500 stock historical data.
【Keywords】:
【Paper Link】 【Pages】:2334-2340
【Authors】: Stefano Faralli ; Giovanni Stilo ; Paola Velardi
【Abstract】: In this paper we perform a large-scale homophily analysis on Twitter using a hierarchical representation of users' interests which we call a Twixonomy. In order to build a population, community, or single-user Twixonomy we first associate "topical" friends in users' friendship lists (i.e. friends representing an interest rather than a social relation between peers) with Wikipedia categories. A word-sense disambiguation algorithm is used to select the appropriate wikipage for each topical friend. Starting from the set of wikipages representing "primitive" interests, we extract all paths connecting these pages with topmost Wikipedia category nodes, and we then prune the resulting graph G efficiently so as to induce a direct acyclic graph. This graph is the Twixonomy. Then, to analyze homophily, we compare different methods to detect communities in a peer friends Twitter network, and then for each community we compute the degree of homophily on the basis of a measure of pairwise semantic similarity.We show that the Twixonomy provides a means for describing users' interests in a compact and readable way and allows for a fine-grained homophily analysis. Furthermore, we show that mid-low level categories in the Twixonomy represent the best balance between informativeness and compactness of the representation.
【Keywords】:
【Paper Link】 【Pages】:2341-2347
【Authors】: Shoushan Li ; Jingjing Wang ; Guodong Zhou ; Hanxiao Shi
【Abstract】: Interactive gender inference aims to infer the genders of the two involved users in a communication from the interactive text. In this paper, we address this task by proposing a joint inference approach which well incorporates label correlations among the instances. Specifically, an Integer Linear Programming (ILP) approach is proposed to achieve global optimization with various kinds of intra-task and extra-task constraints. Empirical studies demonstrate the effectiveness of the proposed ILP-based approach to interactive gender inference.
【Keywords】:
【Paper Link】 【Pages】:2348-2354
【Authors】: Xin Li ; Yiqun Liu ; Min Zhang ; Shaoping Ma ; Xuan Zhu ; Jiashen Sun
【Abstract】: With Community Question Answering (CQA) evolving into a quite popular method for information seeking and providing, it also becomes a target for spammers to disseminate promotion campaigns. Although there are a number of quality estimation efforts on the CQA platform, most of these works focus on identifying and reducing low-quality answers, which are mostly generated by impatient or inexperienced answerers. However, a large number of promotion answers appear to provide high-quality information to cheat CQA users in future interactions. Therefore, most existing quality estimation works in CQA may fail to detect these specially designed answers or question-answer pairs. In contrast to these works, we focus on the promotion channels of spammers, which include (shortened) URLs, telephone numbers and social media accounts. Spammers rely on these channels to connect to users to achieve promotion goals so they are irreplaceable for spamming activities. We propose a propagation algorithm to diffuse promotion intents on an "answerer-channel" bipartite graph and detect possible spamming activities. A supervised learning framework is also proposed to identify whether a QA pair is spam based on propagated promotion intents. Experimental results based on more than 6 million entries from a popular Chinese CQA portal show that our approach outperforms a number of existing quality estimation methods for detecting promotion campaigns on both the answer level and QA pair level.
【Keywords】:
【Paper Link】 【Pages】:2355-2361
【Authors】: Ming Liu ; Lei Chen ; Bingquan Liu ; Xiaolong Wang
【Abstract】: There are lots of texts appearing in the web every day. This fact enables the amount of texts in the web to explode. Therefore, how to deal with large-scale text collection becomes more and more important. Clustering is a generally acceptable solution for text organization. Via its unsupervised characteristic, users can easily dig the useful information that they desired. However, traditional clustering algorithms can only deal with small-scale text collection. When it enlarges, they lose their performances. The main reason attributes to the high-dimensional vectors generated from texts. Therefore, to cluster texts in large amount, this paper proposes a novel clustering algorithm, where only the features that can represent cluster are preserved in cluster’s vector. In this algorithm, clustering process is separated into two parts. In one part, feature’s weight is fine-tuned to make cluster partition meet an optimization function. In the other part, features are reordered and only the useful features that can represent cluster are kept in cluster’s vector. Experimental results demonstrate that our algorithm obtains high performance on both small-scale and large-scale text collections.
【Keywords】:
【Paper Link】 【Pages】:2362-2370
【Authors】: Shilad Sen ; Isaac L. Johnson ; Rebecca Harper ; Huy Mai ; Samuel Horlbeck Olsen ; Benjamin Mathers ; Laura Souza Vonessen ; Matthew Wright ; Brent Hecht
【Abstract】: Semantic relatedness (SR) measures form the algorithmic foundation of intelligent technologies in domains ranging from artificial intelligence to human-computer interaction. Although SR has been researched for decades, this work has focused on developing general SR measures rooted in graph and text mining algorithms that perform reasonably well for many different types of concepts. This paper introduces domain-specific SR, which augments general SR by identifying, capturing, and synthesizing domain-specific relationships between concepts. Using the domain of geography as a case study, we show that domain-specific SR — and even geography-specific signals alone (e.g. distance, containment) without sophisticated graph or text mining algorithms — significantly outperform the SR state-of-the-art for geographic concepts. In addition to substantially improving SR measures for geospatial technologies, an area that is rapidly increasing in importance, this work also unlocks an important new direction for SR research: SR measures that incorporate domain-specific customizations to increase accuracy.
【Keywords】:
【Paper Link】 【Pages】:2371-2377
【Authors】: Xuemeng Song ; Liqiang Nie ; Luming Zhang ; Maofu Liu ; Tat-Seng Chua
【Abstract】: User interest inference from social networks is a fundamental problem to many applications. It usually exhibits dual-heterogeneities: a user's interests are complementarily and comprehensively reflected by multiple social networks; interests are inter-correlated in a nonuniform way rather than independent to each other. Although great success has been achieved by previous approaches, few of them consider these dual-heterogeneities simultaneously. In this work, we propose a structure-constrained multi-source multi-task learning scheme to co-regularize the source consistency and the tree-guided task relatedness. Meanwhile, it is able to jointly learn the task-sharing and task-specific features. Comprehensive experiments on a real-world dataset validated our scheme. In addition, we have released our dataset to facilitate the research communities.
【Keywords】:
【Paper Link】 【Pages】:2378-2379
【Authors】: Yilin Wang ; Suhang Wang ; Jiliang Tang ; Huan Liu ; Baoxin Li
【Abstract】: Recently text-based sentiment prediction has been extensively studied, while image-centric sentiment analysis receives much less attention. In this paper,we study the problem of understanding human sentiments from large-scale social media images,considering both visual content and contextual information,such as comments on the images, captions,etc. The challenge of this problem lies in the “semantic gap” between low-level visual features and higher-level image sentiments. Moreover, the lack of proper annotations/labels in the majority of social media images presents another challenge.To address these two challenges, we propose a novel Unsupervised SEntiment Analysis (USEA) framework for social media images. Our approach exploits relations among visual content and relevant contextual information to bridge the “semantic gap” in the prediction of image sentiments. With experiments on two large-scale datasets, we show that the proposed method is effective in addressing the two challenges.
【Keywords】:
【Paper Link】 【Pages】:2380-2386
【Authors】: Xiaochi Wei ; Heyan Huang ; Chin-Yew Lin ; Xin Xin ; Xianling Mao ; Shangguang Wang
【Abstract】: The vote mechanism is widely utilized to rank answers in community-based question answering sites. In generating a vote, a user's attention is influenced by the answer position and appearance, in addition to real answer quality. Previously, these biases are ignored. As a result, the top answers obtained from this mechanism are not reliable, if the number of votes for the active question is not sufficient. In this paper, we solve this problem by analyzing two kinds of biases; position bias and appearance bias. We identify the existence of these biases and propose a joint click model for dealing with both of them. Our experiments in real data demonstrate how the ranking performance of the proposed model outperforms traditional methods with biases ignored by 15.1% in precision@1, and 11.7% in the mean reciprocal rank. A case study on a manually labeled dataset futher supports the effectiveness of the proposed model.
【Keywords】:
【Paper Link】 【Pages】:2387-2393
【Authors】: Xiaofeng Yu ; Junqing Xie ; Shuai Wang
【Abstract】: In this work, we investigate the bidirectional mutual interactions (BMI) between users' activities and user-user relationships on social networking sites. We analyze and study the fundamental mechanism that drives the characteristics and dynamics of BMI is the underlying social influence. We make an attempt at a unified probabilistic approach, called joint activity and relation (JAR), for modeling and predicting users' activities and user-user relationships simultaneously in a single coherent framework. Instead of incorporating social influence in an ad hoc manner, we show that social influence can be captured quantitatively. Based on JAR, we learn social influence between users and users' personal preferences for both user activity prediction and user-user relation discovery through statistical inference. To address the challenges of the introduced multiple layers of hidden variables in JAR, we propose a new learning algorithm based on expectation maximization (EM) and we further propose a powerful and efficient generalization of the EM based algorithm for model fitting.We show that JAR exploits mutual interactions and benefits, by taking advantage of the learned social influence and users' personal preferences, for enhanced user activity prediction and user-user relation discovery. We further experiment with real world dataset to verify the claimed advantages achieving substantial performance gains.
【Keywords】:
【Paper Link】 【Pages】:2394-2400
【Authors】: Hongyi Zhang ; Michael R. Lyu ; Irwin King
【Abstract】: Community detection is of crucial importance in understanding structures of complex networks. In many real-world networks, communities naturally overlap since a node usually has multiple community memberships. One popular technique to cope with overlapping community detection is Matrix Factorization (MF). However, existing MF-based models have ignored the fact that besides neighbors, "local non-neighbors" (e.g., my friend's friend but not my direct friend) are helpful when discovering communities. In this paper, we propose a Locality-based Non-negative Matrix Factorization (LNMF) model to refine a preference-based model by incorporating locality into learning objective. We define a subgraph called "k-degree local network" to set a boundary between local non-neighbors and other non-neighbors. By discriminately treating these two class of non-neighbors, our model is able to capture the process of community formation. We propose a fast sampling strategy within the stochastic gradient descent based learning algorithm. We compare our LNMF model with several baseline methods on various real-world networks, including large ones with ground-truth communities. Results show that our model outperforms state-of-the-art approaches.
【Keywords】:
【Paper Link】 【Pages】:2401-2407
【Authors】: Xiaoming Zhang ; Xia Hu ; Zhoujun Li
【Abstract】: Image location prediction is to estimate the geolocation where an image is taken. Social image contains heterogeneous contents, which makes image location prediction nontrivial. Moreover, it is observed that image content patterns and location preferences correlate hierarchically. Traditional image location prediction methods mainly adopt a single-level architecture, which is not directly adaptable to the hierarchical correlation. In this paper, we propose a geographically hierarchical bi-modal deep belief network model (GH-BDBN), which is a compositional learning architecture that integrates multi-modal deep learning model with non-parametric hierarchical prior model. GH-BDBN learns a joint representation capturing the correlations among different types of image content using a bi-modal DBN, with a geographically hierarchical prior over the joint representation to model the hierarchical correlation between image content and location. Experimental results demonstrate the superiority of our model for image location prediction.
【Keywords】:
【Paper Link】 【Pages】:2408-2414
【Authors】: Yongfeng Zhang ; Yunzhi Tan ; Min Zhang ; Yiqun Liu ; Tat-Seng Chua ; Shaoping Ma
【Abstract】: Many e-commerce systems allow users to express their opinions towards products through user reviews systems. The user generated reviews not only help other users to gain a more insightful view of the products, but also help online businesses to make targeted improvements on the products or services. Besides, they compose the key component of various personalized recommender systems. However, the existence of spam user accounts in the review systems introduce unfavourable disturbances into personalized recommendation by promoting or degrading targeted items intentionally through fraudulent reviews. Previous shilling attack detection algorithms usually deal with a specific kind of attacking strategy, and are exhausted to handle with the continuously emerging new cheating methods. In this work, we propose to conduct shilling attack detection for more informed recommendation by fraudulent action propagation on the reviews themselves, without caring about the specific underlying cheating strategy, which allows us a unified and flexible framework to detect the spam users.
【Keywords】:
【Paper Link】 【Pages】:2415-2423
【Authors】: Xingwei Zhu ; Zhaoyan Ming ; Yu Hao ; Xiaoyan Zhu
【Abstract】: Recommendation systems play an important role in E-Commerce. However, their potential usefulness in real world applications is greatly limited by the availability of historical rating records from the customers. This paper presents a novel method to tackle the problem of data sparseness in user ratings with rich and timely domain information from social media. We first extract multiple side information for products from their relevant social media contents. Next, we convert the information into weighted topic-item ratings and inject them into an extended latent factor based recommendation model in an optimized approach. Our evaluation on two real world datasets demonstrates the superiority of our method over state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:2424-2430
【Authors】: Andreas Arzt ; Harald Frostel ; Thassilo Gadermaier ; Martin Gasser ; Maarten Grachten ; Gerhard Widmer
【Abstract】: In this paper we present a real-world application (the first of its kind) of machine listening in the context of a live concert in a world-famous concert hall - the Concertgebouw in Amsterdam. A real-time music tracking algorithm listens to the Royal Concertgebouw Orchestra performing Richard Strauss' Alpensinfonie and follows the progress in the sheet music, i.e., continuously tracks the most likely position of the live music in the printed score. This information, in turn, is used to enrich the concert experience for members of the audience by streaming synchronised visual content (the sheet music, explanatory text and videos) onto tablet computers in the concert hall. The main focus of this paper is on the challenges involved in tracking live orchestral music, i.e., how to deal with heavily polyphonic music, how to prepare the data needed, and how to achieve the necessary robustness and precision.
【Keywords】:
【Paper Link】 【Pages】:2431-
【Authors】: Alexander Berman ; Valencia James
【Abstract】: This paper presents an interdisciplinary project which aims at cross-fertilizing dance with artificial intelligence. It utilizes AI as an approach to explore and unveil new territories of possible dance movements. Statistical analyzes of recorded human dance movements provide the foundation for a system that learns poses from human dancers, extends them with novel variations and creates new movement sequences. The system provides dancers with a tool for exploring possible movements and finding inspiration from motion sequences generated automatically in real time in the form of an improvising avatar. Experiences of bringing the avatar to the studio as a virtual dance partner indicate the usefulness of the software as a tool for kinetic exploration. In addition to these artistic results, the experiments also raise questions about how AI generally relates to artistic agency and creativity. Is the improvising avatar truly creative, or is it merely some kind of extension of the dancer or the AI researcher? By analyzing the developed platform as a framework for exploration of conceptual movement spaces, and by considering the interaction between dancer, researcher and software, some possible interpretations of this particular kind of creative process can be offered.
【Keywords】:
【Paper Link】 【Pages】:2138-2444
【Authors】: Mark d'Inverno ; Jon McCormack
【Abstract】: This paper considers the kinds of AI systems we want involved in art and art practice. We explore this relationship from three perspectives: as artists interested in expanding and developing our own creative practice; as AI researchers interested in building new AI systems that contribute to the understanding and development of art and art practice; and as audience members interested in experiencing art. We examine the nature of both art practice and experiencing art to ask how AI can contribute. To do so, we review the history of work in intelligent agents which broadly speaking sits in two camps: autonomous agents (systems that can exhibit intelligent behaviour independently) in one, and multi-agent systems (systems which interact with other systems in communities of agents) in the other. In this context we consider the nature of the relationship between AI and Art and introduce two opposing concepts: that of “Heroic AI”, to describe the situation where the software takes on the role of the lone creative hero and “Collaborative AI” where the system supports, challenges and provokes the creative activity of humans. We then set out what we believe are the main challenges for AI research in understanding its potential relationship to art and art practice.
【Keywords】:
【Paper Link】 【Pages】:2445-2451
【Authors】: Manfred Eppe ; Roberto Confalonieri ; Ewen Maclean ; Maximos A. Kaliakatsos-Papakostas ; Emilios Cambouropoulos ; W. Marco Schorlemmer ; Mihai Codescu ; Kai-Uwe Kühnberger
【Abstract】: We present a computational framework for chord invention based on a cognitive-theoretic perspective on conceptual blending. The framework builds on algebraic specifications, and solves two musicological problems. It automatically finds transitions between chord progressions of different keys or idioms, and it substitutes chords in a chord progression by other chords of a similar function, as a means to create novel variations. The approach is demonstrated with several examples where jazz cadences are invented by blending chords in cadences from earlier idioms, and where novel chord progressions are generated by inventing transition chords.
【Keywords】:
【Paper Link】 【Pages】:2452-2458
【Authors】: Lorenzo Gatti ; Gözde Özbal ; Marco Guerini ; Oliviero Stock ; Carlo Strapparava
【Abstract】: Artistic creation is often based on the concept of blending. Linguistic creativity is no exception, as demonstrated for instance by the importance of metaphors in poetry. Blending can also be used to evoke a secondary concept while playing with an already given piece of language, either with the intention of making the secondary concept well perceivable to the reader, or instead, to subtly evoke something additional. Current language technology can do a lot in this connection, and automated language creativity can be useful in cases where input or target are to change continuously, making human production not feasible. In this work we present a system that takes existing well-known expressions and innovates them by bringing in a novel concept coming from evolving news. The technology is composed of several steps concerned with the selection of the sortable concepts and the production of novel expressions, largely relying on state of the art corpus-based methods. Proposed applications include: i) producing catchy news headlines by "parasitically" exploiting well known successful expressions and adapting them to the news at hand; ii) generating adaptive slogans that allude to news of the day and give life to the concept evoked by the slogan; iii) providing artists with an application for boosting their creativity.
【Keywords】:
【Paper Link】 【Pages】:2459-2465
【Authors】: Stefan Lattner ; Carlos Eduardo Cancino Chacón ; Maarten Grachten
【Abstract】: An important aspect of music perception in humans is the ability to segment streams of musical events into structural units such as motifs and phrases.A promising approach to the computational modeling of music segmentation employs the statistical and information-theoretic properties of musical data, based on the hypothesis that these properties can (at least partly) account for music segmentation in humans. Prior work has shown that in particular the information content of music events, as estimated from a generative probabilistic model of those events, is a good indicator for segment boundaries.In this paper we demonstrate that, remarkably, a substantial increase in segmentation accuracy can be obtained by not using information content estimates directly, but rather in a bootstrapping fashion. More specifically, we use information content estimates computed from a generative model of the data as a target for a feed-forward neural network that is trained to estimate the information content directly from the data. We hypothesize that the improved segmentation accuracy of this bootstrapping approach may be evidence that the generative model provides noisy estimates of the information content, which are smoothed by the feed-forward neural network, yielding more accurate information content estimates.
【Keywords】:
【Paper Link】 【Pages】:2466-2472
【Authors】: Catarina Maçãs ; Pedro Cruz ; Pedro Martins ; Penousal Machado
【Abstract】: Information Aesthetics is an emerging sub-field of Data Visualization that aims to engage the viewers and lure them into decode the visualization. The introduction of self-organising systems can aid the creation of these visual representations through the exploration of emergent patterns. In this paper, we apply a swarm based system as a method to create emergent visualizations of data that convey meaningful information in an inciting way, exploring the boundaries between Data Visualization and Information Aesthetics. The approach is used to visually convey the consumption patterns in 729 Portuguese hypermarkets over the course of two years. The analysis of the experimental results focuses on the ability of the emergent visualizations to communicate information while engaging the viewer with organic visuals.
【Keywords】:
【Paper Link】 【Pages】:2473-2479
【Authors】: Penousal Machado ; Adriano Vinhas ; João Correia ; Anikó Ekárt
【Abstract】: This work explores the creation of ambiguous images, i.e., images that may induce multistable perception, by evolutionary means. Ambiguous images are created using a general purpose approach, composed of an expression-based evolutionary engine and a set of object detectors, which are trained in advance using Machine Learning techniques. Images are evolved using Genetic Programming and object detectors are used to classify them. The information gathered during classification is used to assign fitness. In a first stage, the system is used to evolve images that resemble a single object. In a second stage, the discovery of ambiguous images is promoted by combining pairs of object detectors. The analysis of the results highlights the ability of the system to evolve ambiguous images and the differences between computational and human ambiguous images.
【Keywords】:
【Paper Link】 【Pages】:2480-2481
【Authors】: AnneMarie Maes
【Abstract】: The Scaffolded Sound Beehive is an immersive multi-media installation which provides viewers an artistic visual and audio experience of activities in a beehive. Data were recorded in urban beehives and processed using sophisticated pattern recognition, AI technologies, and sonification and computer graphics software. The installation includes an experiment in using Deep Learning to interpret the activities in the hive based on sound and microclimate recording.
【Keywords】:
【Paper Link】 【Pages】:2482-2488
【Authors】: François Pachet ; Pierre Roy ; Alexandre Papadopoulos ; Jason Sakellariou
【Abstract】: Many natural phenomena exhibit power law spectra. In particular, so-called 1/fα noise series with α close to 1 (also called pink noise) occur in sound, music and countless human artifacts or natural events, from the fluctuations of the flood levels of the Nile to movements of the stock market. As a consequence, many generative models for 1/f noise have been designed to produce series that look or sound “natural” or “human”. In this paper, we formulate the generation of 1/f series as a hard constraint satisfaction problem, so that 1/f noise generation can be used as an add-on to arbitrary sequence generation problems. We take inspiration from a simple yet beautiful stochastic algorithm invented by Voss and introduce the Voss constraint. We show that Voss’ algorithm can be modeled as a tree of ternary sum constraints, leading to efficient filtering. We illustrate our constraint with a melody generation problem, and show that the addition of the Voss constraint tends indeed to produce sequences whose spectrum have a 1/f distribution, regardless of the other constraints of the problem. We discuss the advantages and limitations of this approach and possible extensions.
【Keywords】:
【Paper Link】 【Pages】:2489-2495
【Authors】: Alexandre Papadopoulos ; Pierre Roy ; Jean-Charles Régin ; François Pachet
【Abstract】: We address the problem of generating all possible palindromes from a corpus of Ngrams. Palindromes are texts that read the same both ways. Short palindromes ("race car") usually carry precise, significant meanings. Long palindromes are often less meaningful, but even harder to generate. The palindrome generation problem has never been addressed, to our knowledge, from a strictly combinatorial point of view. The main difficulty is that generating palindromes require the simultaneous consideration of two inter-related levels in a sequence: the "character" and the "word" levels. Although the problem seems very combinatorial, we propose an elegant yet non-trivial graph structure that can be used to generate all possible palindromes from a given corpus of Ngrams, with a linear complexity. We illustrate our approach with short and long palindromes obtained from the Google Ngram corpus. We show how we can control the semantics, to some extent, by using arbitrary text corpora to bias the probabilities of certain sets of words. More generally this work addresses the issue of modelling human virtuosity from a combinatorial viewpoint, as a means to understand human creativity.
【Keywords】:
【Paper Link】 【Pages】:2496-2502
【Authors】: Rafal Rzepka ; Kenji Araki
【Abstract】: In this paper we introduce our haiku generator, which, in contrast to other systems, is not restricted to limited classic vocabulary sets and preserves a classic style without becoming too random and abstract because it performs a semantic integrity check using the Internet. Moreover, it is able to analyze blog entry input and, by using nouns and adjectives for web-mining, to stay on topic and still preserve kigo, traditional seasonal words used in Japanese poetry. The haiku generator utilizes grammar templates automatically generated from poems written by Japanese poets and a lexicon of 2,473 kigo words from an online haiku repository. In addition to generating haiku poems, it can output them vocally together with related sound effects and images retrieved from the WWW. Our experiments demonstrate that the proposed system generates high-quality haikus and that using content-related input and multimedia-rich output is effective for increasing users' satisfaction. We have performed impression evaluation experiments and confirmed that our method is especially useful for generating haikus with higher depth and sound-sharpness, which are two very important categories in professional evaluation of Japanese poetry. Next, haikus generated using the proposed method were evaluated by blog authors and blog readers and again, the proposed method outperformed the baseline. We also measured how the presence or absence of multimedia output influenced the evaluation. While using both vocal output and an image achieved higher scores than text alone, there were cases in which some combinations of effects were evaluated higher than all the effects used together. With our original approach to generating poetry, we wish to show the importance of new media and possibilities that are arising from the utilization of the "wisdom of (web-)crowds" in order to achieve higher standards for AI-generated art.
【Keywords】:
【Paper Link】 【Pages】:2503-2509
【Authors】: Andreza Sartori ; Yan Yan ; Gözde Özbal ; Alkim Almila Akdag Salah ; Albert Ali Salah ; Nicu Sebe
【Abstract】: Abstract artists use non-figurative elements (i.e. colours, lines, shapes, and textures) to convey emotions and often rely on the titles of their various compositions to generate (or enhance) an emotional reaction in the audience. Several psychological works observed that the metadata (i.e., titles, description and/or artist statements) associated with paintings increase the understanding and the aesthetic appreciation of artworks. In this paper we explore if the same metadata could facilitate the computational analysis of artworks, and reveal what kind of emotional responses they awake. To this end, we employ computer vision and sentiment analysis to learn statistical patterns associated with positive and negative emotions on abstract paintings. We propose a multimodal approach which combines both visual and metadata features in order to improve the machine performance. In particular, we propose a novel joint flexible Schatten p-norm model which can exploit the sharing patterns between visual and textual information for abstract painting emotion analysis. Moreover, we conduct a qualitative analysis on the cases in which metadata help improving the machine performance.
【Keywords】:
【Paper Link】 【Pages】:2510-2516
【Authors】: Rongju Sun ; Zhouhui Lian ; Yingmin Tang ; Jianguo Xiao
【Abstract】: Aesthetic evaluation of Chinese calligraphy is one of the most challenging tasks in Artificial Intelligence. This paper attempts to solve this problem by proposing a number of aesthetic feature representations and feeding them into Artificial Neural Networks. Specifically, 22 global shape features are presented to describe a given handwritten Chinese character from different aspects according to classical calligraphic rules, and a new 10-dimensional feature vector is introduced to represent the component layout information using sparse coding. Moreover, a Chinese Handwriting Aesthetic Evaluation Database (CHAED) is also built by collecting 1000 Chinese handwriting images with diverse aesthetic qualities and inviting 33 subjects to evaluate the aesthetic quality for each calligraphic image. Finally, back propagation neural networks are constructed with the concatenation of the proposed features as input and then trained on our CHAED database for the aesthetic evaluation of Chinese calligraphy. Experimental results demonstrate that the proposed AI system provides a comparable performance with human evaluation. Through our experiments, we also compare the importance of each individual feature and reveal the relationship between our aesthetic features and the aesthetic perceptions of human beings.
【Keywords】:
【Paper Link】 【Pages】:2517-2523
【Authors】: Josep Valls-Vargas ; Jichen Zhu ; Santiago Ontañón
【Abstract】: While most natural language understanding systems rely on a pipeline-based architecture, certain human text interpretation methods are based on a cyclic process between the whole text and its parts: the hermeneutic circle. In the task of automatically identifying characters and their narrative roles, we propose a feedback-loop-based approach where the output of later modules of the pipeline is fed back to earlier ones. We analyze this approach using a corpus of 21 Russian folktales. Initial results show that feeding back high-level narrative information improves the performance of some NLP tasks.
【Keywords】:
【Paper Link】 【Pages】:2524-2530
【Authors】: Dekai Wu ; Karteek Addanki
【Abstract】: We describe an unconventional line of attack in our quest to teach machines how to rap battle by improvising hip hop lyrics on the fly, in which a novel recursive bilingual neural network, TRAAM, implicitly learns soft, context-dependent generalizations over the structural relationships between associated parts of challenge and response raps, while avoiding the exponential complexity costs that symbolic models would require. TRAAM learns feature vectors simultaneously using context from both the challenge and the response, such that challenge-response association patterns with similar structure tend to have similar vectors. Improvisation is modeled as a quasi-translation learning problem, where TRAAM is trained to improvise fluent and rhyming responses to challenge lyrics. The soft structural relationships learned by our TRAAM model are used to improve the probabilistic responses generated by our improvisational response component.
【Keywords】:
【Paper Link】 【Pages】:2531-2539
【Authors】: Ning Xie ; Tingting Zhao ; Feng Tian ; Xiao-Hua Zhang ; Masashi Sugiyama
【Abstract】: Among various traditional art forms, brush stroke drawing is one of the widely used styles in modern computer graphic tools such as GIMP, Photoshop and Painter. In this paper, we develop an AI-aided art authoring (A4) system of non-photorealistic rendering that allows users to automatically generate brush stroke paintings in a specific artist's style. Within the reinforcement learning framework of brush stroke generation proposed, our contribution in this paper is to learn artists' drawing styles from video-captured stroke data by inverse reinforcement learning. Through experiments, we demonstrate that our system can successfully learn artists' styles and render pictures with consistent and smooth brush strokes.
【Keywords】:
【Paper Link】 【Pages】:2540-2546
【Authors】: Martin Aleksandrov ; Haris Aziz ; Serge Gaspers ; Toby Walsh
【Abstract】: We study an online model of fair division designed to capture features of a real world charity problem. We consider two simple mechanisms for this model in which agents simply declare what items they like. We analyse axiomatic properties of these mechanisms such as strategy-proofness and envy freeness. Finally, we perform a competitive analysis and compute the price of anarchy.
【Keywords】:
【Paper Link】 【Pages】:2547-2553
【Authors】: Frederik Auffenberg ; Sebastian Stein ; Alex Rogers
【Abstract】: In this paper, we address the challenge of predicting optimal comfort temperatures of individual users of a smart heating system. At present, such systems use simple models of user comfort when deciding on a set point temperature. These models generally fail to adapt to an individual user’s preferences, resulting in poor estimates of a user’s preferred temperature. To address this issue, we propose a personalised thermal comfort model that uses a Bayesian network to learn and adapt to a user’s individual preferences. Through an empirical evaluation based on the ASHRAE RP-884 data set, we show that our model is consistently 17.5- 23.5% more accurate than current models, regardless of environmental conditions and the type of heating system used. Our model is not limited to a single metric but can also infer information about expected user feedback, optimal comfort temperature and thermal sensitivity at the same time, which can be used to reduce energy used for heating with minimal comfort loss.
【Keywords】:
【Paper Link】 【Pages】:2554-2560
【Authors】: Sambaran Bandyopadhyay ; Ramasuri Narayanam ; Ramachandra Kota ; Pg Mohammad Iskandarbin Pg Hj Petra ; Zainul Charbiwala
【Abstract】: Managing peak energy demand is a critical problem for energy utilities. The energy costs for the peak periods form a major component of their overall costs. Real-time pricing mechanisms have been explored as a means of flattening the demand curve and reducing the energy costs. In this paper, we examine a model of ex-post real-time pricing mechanism that can be used by the utilities for this purpose. In particular, we study a convex piecewise linear cost function that modulates the price of energy based on the aggregate demand of the utility. We provide a game-theoretic analysis of the mechanism by constructing a non-cooperative game among the consumers of a utility wherein the cost to each consumer is decided by the pricing mechanism. We formally characterize the Nash equilibrium and other properties for two settings: (i) consumers have full flexibility in shifting their demand, and (ii) consumers can shift only a fraction of their demand at any time to another time.
【Keywords】:
【Paper Link】 【Pages】:2561-2567
【Authors】: Heider Berlink ; Anna H. R. Costa
【Abstract】: Smart grids enhance power grids by integrating electronic equipment, communication systems and computational tools. In a smart grid, consumers can insert energy into the power grid. We propose a new energy management system (called RLbEMS) that autonomously defines a policy for selling or storing energy surplus in smart homes. This policy is achieved through Batch Reinforcement Learning with historical data about energy prices, energy generation, consumer demand and characteristics of storage systems. In practical problems, RLbEMS has learned good energy selling policies quickly and effectively. We obtained maximum gains of 20.78% and 10.64%, when compared to a Naive-greedy policy, for smart homes located in Brazil and in the USA, respectively. Another important result achieved by RLbEMS was the reduction of about 30% of peak demand, a central desideratum for smart grids.
【Keywords】:
【Paper Link】 【Pages】:2568-2574
【Authors】: Christian Bessière ; Emmanuel Hebrard ; George Katsirelos ; Toby Walsh
【Abstract】: Many problems in computational sustainability involve constraints on connectivity. When designing a new wildlife corridor, we need it to be geographically connected. When planning the harvest of a forest, we need new areas to harvest to be connected to areas that have already been harvested so we can access them easily. And when town planning, we need to connect new homes to the existing utility infrastructure. To reason about connectivity, we propose a new family of global connectivity constraints. We identify when these constraints can be propagated tractably, and give some efficient, typically linear time propagators for when this is the case. We report results on several benchmark problems which demonstrate the efficiency of our propagation algorithms and the promise offered by reasoning globally about connectivity.
【Keywords】:
【Paper Link】 【Pages】:2575-2581
【Authors】: Xi C. Chen ; James H. Faghmous ; Ankush Khandelwal ; Vipin Kumar
【Abstract】: Clustering has gained widespread use, especially for static data. However, the rapid growth of spatio-temporal data from numerous instruments, such as earth-orbiting satellites, has created a need for spatio-temporal clustering methods to extract and monitor dynamic clusters. Dynamic spatio-temporal clustering faces two major challenges: First, the clusters are dynamic and may change in size, shape, and statistical properties over time. Second, numerous spatio-temporal data are incomplete, noisy, heterogeneous, and highly variable (over space and time). We propose a new spatio-temporal data mining paradigm, to autonomously identify dynamic spatio-temporal clusters in the presence of noise and missing data. Our proposed approach is more robust than traditional clustering and image segmentation techniques in the case of dynamic patterns, non-stationary, heterogeneity, and missing data. We demonstrate our method's performance on a real-world application of monitoring in-land water bodies on a global scale.
【Keywords】:
【Paper Link】 【Pages】:2582-2588
【Authors】: Yann Dujardin ; Tom Dietterich ; Iadine Chades
【Abstract】: In many POMDP applications in computational sustainability, it is important that the computed policy have a simple description, so that it can be easily interpreted by stakeholders and decision makers. One measure of simplicity for POMDP value functions is the number of alpha-vectors required to represent the value function. Existing POMDP methods seek to optimize the accuracy of the value function, which can require a very large number of alpha-vectors. This paper studies methods that allow the user to explore the tradeoff between the accuracy of the value function and the number of alpha-vectors. Building on previous point-based POMDP solvers, this paper introduces a new algorithm (alpha-min) that formulates a Mixed Integer Linear Program (MILP) to calculate approximate solutions for finite-horizon POMDP problems with limited numbers of alpha-vectors. At each time-step, alpha-min calculates alpha-vectors to greedily minimize the gap between current upper and lower bounds of the value function. In doing so, good upper and lower bounds are quickly reached allowing a good approximation of the problem with few alpha-vectors. Experimental results show that alpha-min provides good approximate solutions given a fixed number of alpha-vectors on small benchmark problems, on a larger randomly generated problem, as well as on a computational sustainability problem to best manage the endangered Sumatran tiger.
【Keywords】:
【Paper Link】 【Pages】:2589-2595
【Authors】: Fei Fang ; Peter Stone ; Milind Tambe
【Abstract】: Building on the successful applications of Stackelberg Security Games (SSGs) to protect infrastructure, researchers have begun focusing on applying game theory to green security domains such as protection of endangered animals and fish stocks. Previous efforts in these domains optimize defender strategies based on the standard Stackelberg assumption that the adversaries become fully aware of the defender's strategy before taking action. Unfortunately, this assumption is inappropriate since adversaries in green security domains often lack the resources to fully track the defender strategy. This paper (i) introduces Green Security Games (GSGs), a novel game model for green security domains with a generalized Stackelberg assumption; (ii) provides algorithms to plan effective sequential defender strategies — such planning was absent in previous work; (iii) proposes a novel approach to learn adversary models that further improves defender performance; and (iv) provides detailed experimental analysis of proposed approaches.
【Keywords】:
【Paper Link】 【Pages】:2596-2602
【Authors】: Maryam Ghasemi ; Benjamin Lubin
【Abstract】: As cloud computing gains in popularity, understanding the patterns and structure of its loads is increasingly important in order to drive effective resource allocation, scheduling and pricing decisions. These efficiency increases are then associated with a reduction in the data center environmental footprint. Existing models have only treated a single resource type, such as CPU, or memory, at a time. We offer a sophisticated machine learning approach to capture the joint-distribution. We capture the relationship among multiple resources by carefully fitting both the marginal distributions of each resource type as well as the non-linear structure of their correlation via a copula distribution. We investigate several choices for both models by studying a public data set of Google data-center usage. We show the Burr XII distribution to be a particularly effective choice for modeling the marginals and the Frank copula to be the best choice for stitching these together into a joint distribution. Our approach offers a significant fidelity improvement and generalizes directly to higher dimensions. In use, this improvement will translate directly to reductions in energy consumption.
【Keywords】:
【Paper Link】 【Pages】:2603-2609
【Authors】: Xiaohong Hao ; Bangsheng Tang ; Yongcai Wang
【Abstract】: Non-Intrusive Load Monitoring (NILM) uses one smart meter at the power feed to disaggregate the states of a set of appliances. Multiple NILM meters are deployed to achieve high monitoring accuracy in large-scale power systems. Our work studies the tradeoff between monitoring accuracy and meter deployment, in a quantitative and extensible way. In particular, we introduce a clearness function as an abstract indicator of expected monitoring accuracy given any NILM method, and then showcase two concrete constructions. With the notation of a clearness function, we propose solutions to the smart meter deployment problem (SMDP), that is, the problem of finding a deployment scheme with minimum number of meters while attaining a required monitoring accuracy. Theoretically, SMDP is shown NP-hard and a polynomial-time approximation scheme (PTAS) is proposed in this paper. For evaluation, we show that our proposed scheme is efficient and effective in terms of approximation ratio and running time. On real and simulated datasets, our proposed framework achieves a higher monitoring accuracy at a much lower cost, outperforming common baseline algorithms.
【Keywords】:
【Paper Link】 【Pages】:2610-2616
【Authors】: Keiichiro Hayakawa ; Enrico H. Gerding ; Sebastian Stein ; Takahiro Shiga
【Abstract】: We propose new mechanisms that can be used by a demand response aggregator to flexibly shift the charging of electric vehicles (EVs) to times where cheap but intermittent renewable energy is in high supply. Here, it is important to consider the constraints and preferences of EV owners, while eliminating the scope for strategic behaviour. To achieve this, we propose, for the first time, a generic class of incentive mechanisms for settings with both varying marginal electricity costs and multidimensional preferences. We show these are dominant strategy incentive compatible, i.e., EV owners are incentivised to report their constraints and preferences truthfully. We also detail a specific instance of this class, show that it achieves ≈98% of the optimal in realistic scenarios and demonstrate how it can be adapted to trade off efficiency with profit.
【Keywords】:
【Paper Link】 【Pages】:2617-2623
【Authors】: Athirai Aravazhi Irissappane ; Jie Zhang ; Frans A. Oliehoek ; Partha Sarathi Dutta
【Abstract】: Wireless sensor networks are being increasingly used for sustainable development. The task of routing in these resource-constraint networks is particularly challenging as they operate over prolonged deployment periods, necessitating optimal use of their resources. Moreover, due to the deployment in unattended environments, they become an easy target for attackers. In this paper, we propose a hierarchical POMDP based approach to make routing decisions with partial/limited information about the sensor nodes, in a secure and energy-efficient manner. We demonstrate in a large-scale simulation that the approach provides a better energy/packet delivery tradeoff than competing methods, and also validate these conclusions in a real-world testbed.
【Keywords】:
【Paper Link】 【Pages】:2624-2631
【Authors】: Andrew Perrault ; Craig Boutilier
【Abstract】: Matching markets are often used in exchange settings (e.g., supply chain) to increase economic efficiency while respecting certain global constraints on outcomes. We investigate their application to pricing and cost sharing in group purchasing of electricity in smart grid settings. The task is complicated by the complexities of producer cost functions due to constraints on generation from different sources (they are sufficiently complex that welfare-optimal matchings are not usually in equilibrium). We develop two novel cost sharing schemes: one based on Shapley values that is "fair," but computationally intensive; and one that captures many of the essential properties of Shapley pricing, but scales to large numbers of consumers. Empirical results show these schemes achieve a high degree of stability in practice and can be made more stable by sacrificing small amounts (< 2%) of social welfare.
【Keywords】:
【Paper Link】 【Pages】:2632-2638
【Authors】: José Francisco Ruiz-Muñoz ; Mauricio Orozco-Alzate ; Germán Castellanos-Domínguez
【Abstract】: Traditional techniques for monitoring wildlife populations are temporally and spatially limited. Alternatively, in order to quickly and accurately extract information about the current state of the environment, tools for processing and recognition of acoustic signals can be used. In the past, a number of research studies on automatic classification of species through their vocalizations have been undertaken. In many of them, however, the segmentation applied in the preprocessing stage either implies human effort or is insufficiently described to be reproduced. Therefore, it might be unfeasible in real conditions. Particularly, this paper is focused on the extraction of local information as units --called instances-- from audio recordings. The methodology for instance extraction consists in the segmentation carried out using image processing techniques on spectrograms and the estimation of a needed threshold by the Otsu's method. The multiple instance classification (MIC) approach is used for the recognition of the sound units. A public data set was used for the experiments. The proposed unsupervised segmentation method has a practical advantage over the compared supervised method, which requires the training from manually segmented spectrograms. Results show that there is no significant difference between the proposed method and its baseline. Therefore, it is shown that the proposed approach is feasible to design an automatic recognition system of recordings which only requires, as training information, labeled examples of audio recordings.
【Keywords】:
【Paper Link】 【Pages】:2639-2645
【Authors】: René Schönfelder ; Martin Leucker
【Abstract】: The functional and the algebraic routing problem are generalizations of the shortest path problem. This paper shows that both problems are equivalent with respect to the concept of profile searches known from time-dependent routing. Because of this, it is possible to apply various shortest path algorithms to these routing problems. This is demonstrated using contraction hierarchies as an example. Furthermore, we show how to use Cousots' concept of abstract interpretation on these routing problems generalizing the idea of routing approximations, which can be used to find approximative solutions and even to improve the performance of exact queries. The focus of this paper lies on vehicle routing while both the functional and algebraic routing models were introduced in the context of internet routing. Due to our formal combination of both fields, new algorithms abound for various specialized vehicle routing problems. We consider two major examples, namely the time-dependent routing problem for public transportation and the energy-efficient routing problem for electric vehicles.
【Keywords】:
【Paper Link】 【Pages】:2646-2654
【Authors】: Kalyan Veeramachaneni ; Alfredo Cuesta-Infante ; Una-May O'Reilly
【Abstract】: We develop multivariate copulas for modeling multiple joint distributions of wind speeds at a wind farm site and neighboring wind source. A ndimensional Gaussian copula and multiple copula graphical models enhance the quality of the prediction site distribution. The models, in comparison to multiple regression, achieve higher accuracy and lower cost because they require less sensing data.
【Keywords】:
【Paper Link】 【Pages】:2655-2661
【Authors】: XiaoJian Wu ; Daniel Sheldon ; Shlomo Zilberstein
【Abstract】: We address a spatial conservation planning problem in which the planner purchases a budget-constrained set of land parcels in order to maximize the expected spread of a population of an endangered species. Existing techniques based on the sample average approximation scheme and standard integer programming methods have high complexity and limited scalability. We propose a fast combinatorial optimization algorithm using Lagrangian relaxation and primal-dual techniques to solve the problem approximately. The algorithm provides a new way to address a range of conservation planning and scheduling problems. On the Red-cockaded Woodpecker data, our algorithm produces near optimal solutions and runs significantly faster than a standard mixed integer program solver. Compared with a greedy baseline, the solution quality is comparable or better, but our algorithm is 10–30 times faster. On synthetic problems that do not exhibit submodularity, our algorithm significantly outperforms the greedy baseline.
【Keywords】:
【Paper Link】 【Pages】:2662-2668
【Authors】: Yanhai Xiong ; Jiarui Gan ; Bo An ; Chunyan Miao ; Ana L. C. Bazzan
【Abstract】: Many countries like Singapore are planning to introduce Electric Vehicles (EVs) to replace traditional vehicles to reduce air pollution and improve energy efficiency. The rapid development of EVs calls for efficient deployment of charging stations both for the convenience of EVs and maintaining the efficiency of the road network. Unfortunately, existing work makes unrealistic assumption on EV drivers' charging behaviors and focus on the limited mobility of EVs. This paper studies the Charging Station PLacement (CSPL) problem, and takes into consideration 1) EV drivers' strategic behaviors to minimize their charging cost, and 2) the mutual impact of EV drivers' strategies on the traffic conditions of the road network and service quality of charging stations. We first formulate the CSPL problem as a bilevel optimization problem, which is subsequently converted to a single-level optimization problem by exploiting structures of the EV charging game played by EV drivers. Properties of CSPL problem are analyzed and an algorithm called OCEAN is proposed to compute the optimal allocation of charging stations. We further propose a heuristic algorithm OCEAN-C to speed up OCEAN. Experimental results show that the proposed algorithms significantly outperform baseline methods.
【Keywords】:
【Paper Link】 【Pages】:2669-2676
【Authors】: Ronghuo Zheng ; Ying Xu ; Nilanjan Chakraborty ; Katia P. Sycara
【Abstract】: This paper studies a new renewable energy investment model through crowdfunding, which is motivated by emerging community solar farms. In this paper we develop a sequential game theory model to capture the interactions among crowdfunders, the solar farm owner, and an electricity company who purchases renewable energy generated by the solar farm in a multi-period framework. By characterizing a unique subgame-perfect equilibrium, andcomparing it with a benchmark model without crowdfunding, we find that under crowdfunding although the farm owner reduces its investment level, the overall green energy investment level is increased due to the contribution of crowdfunders. We also find that crowdfunding can increase the penetration of green energy in consumption and thus reduce the energy procurement cost of the electricity company. Finally, the numerical results based on real data indicates crowdfunding is a simple but effective way to boost green generation.
【Keywords】:
【Paper Link】 【Pages】:2677-2683
【Authors】: Mario Alviano ; Carmine Dodaro ; Francesco Ricca
【Abstract】: Core-guided algorithms proved to be effective on industrial instances of MaxSAT, the optimization variant of the satisfiability problem for propositional formulas. These algorithms work by iteratively checking satisfiability of a formula that is relaxed at each step by using the information provided by unsatisfiable cores. The paper introduces a new core-guided algorithm that adds cardinality constraints for each detected core, but also limits the number of literals in each constraint in order to control the number of refutations in subsequent satisfiability checks. The performance gain of the new algorithm is assessed on the industrial instances of the 2014 MaxSAT Evaluation.
【Keywords】:
【Paper Link】 【Pages】:2684-2690
【Authors】: Mario Alviano ; Wolfgang Faber
【Abstract】: This paper relates two extensively studied formalisms: abstract dialectical frameworks and logic programs with generalized atoms or similar constructs. While the syntactic similarity is easy to see, also a strong relation between various stable model semantics proposed for these formalisms is shown by means of a unifying framework in which these semantics are restated in terms of program reducts and an immediate consequence operator, where program reducts have only minimal differences. This approach has advantages for both formalisms, as for example implemented systems for one formalism are usable for the other, and properties such as computational complexity do not have to be rediscovered. As a first, concrete result of this kind, one stable model semantics based on program reducts and subset-minimality that reached a reasonable consensus for logic programs with generalized atoms provides a novel, alternative semantics for abstract dialectical frameworks.
【Keywords】:
【Paper Link】 【Pages】:2691-2697
【Authors】: Antoine Amarilli ; Michael Benedikt
【Abstract】: Query answering under existential rules — implications with existential quantifiers in the head — is known to be decidable when imposing restrictions on the rule bodies such as frontier-guardedness [Baget et al., 2010; Baget et al., 2011a]. Query answering is also decidable for description logics [Baader, 2003], which further allow disjunction and functionality constraints (assert that certain relations are functions); however, they are focused on ER-type schemas, where relations have arity two. This work investigates how to get the best of both worlds: having decidable existential rules on arbitrary arity relations, while allowing rich description logics, including functionality constraints, on arity-two relations. We first show negative results on combining such decidable languages. Second, we introduce an expressive set of existential rules (frontier-one rules with a certain restriction) which can be combined with powerful constraints on arity-two relations (e.g. GC2, ALCQIb) while retaining decidable query answering. Further, we provide conditions to add functionality constraints on the higher-arity relations.
【Keywords】:
【Paper Link】 【Pages】:2698-2705
【Authors】: Marcelo Arenas ; Gabriel Diéguez ; Jorge Pérez
【Abstract】: In this paper, we propose to use the language of bidirectional constraints to specify schema mappings in the context of data exchange. These constraints impose restrictions over both the source and the target data, and have the potential to minimize the ambiguity in the description of the target data to be materialized. We start by making a case for the usefulness of bidirectional constraints to give a meaningful closed-world semantics for st-tgds, which is motivated by Clark's predicate completion and Reiter's formalization of the closed-world assumption of a logical theory. We then formally study the use of bidirectional constraints in data exchange. In particular, we pinpoint the complexity of the existence-of-solutions and the query evaluation problems in several different scenarios, including in the latter case both monotone and non-monotone queries.
【Keywords】:
【Paper Link】 【Pages】:2706-2712
【Authors】: Alessandro Artale ; Roman Kontchakov ; Alisa Kovtunova ; Vladislav Ryzhikov ; Frank Wolter ; Michael Zakharyaschev
【Abstract】: Aiming at ontology-based data access over temporal, in particular streaming data, we design a language of ontology-mediated queries by extending OWL 2 QL and SPARQL with temporal operators, and investigate rewritability of these queries into two-sorted first-order logic with < and PLUS over time.
【Keywords】:
【Paper Link】 【Pages】:2713-2719
【Authors】: Guillaume Aucher ; Vaishak Belle
【Abstract】: The idea of only knowing is a natural and intuitive notion to precisely capture the beliefs of a knowledge base. However, an extension to the many agent case, as would be needed in many applications, has been shown to be far from straightforward. For example, previous Kripke frame-based accounts appeal to proof-theoretic constructions like canonical models, while more recent works in the area abandoned Kripke semantics entirely. We propose a new account based on Moss’ characteristic formulas, formulated for the usual Kripke semantics. This is shown to come with other benefits: the logic admits a group version of only knowing, and an operator for assessing the epistemic entrenchment of what an agent or a group only knows is definable. Finally, the multi-agent only knowing operator is shown to be expressible with the cover modality of classical modal logic, which then allows us to obtain a completeness result for a fragment of the logic.
【Keywords】:
【Paper Link】 【Pages】:2720-2726
【Authors】: Jean-François Baget ; Meghyn Bienvenu ; Marie-Laure Mugnier ; Swan Rocher
【Abstract】: We consider existential rules (aka Datalog +/-) as a formalism for specifying ontologies. In recent years, many classes of existential rules have been exhibited for which conjunctive query (CQ) entailment is decidable. However, most of these classes cannot express transitivity of binary relations, a frequently used modelling construct. In this paper, we address the issue of whether transitivity can be safely combined with decidable classes of existential rules. First, we prove that transitivity is incompatible with one of the simplest decidable classes, namely aGRD (acyclic graph of rule dependencies), which clarifies the landscape of ‘finite expansion sets’ of rules. Second, we show that transitivity can be safely added to linear rules (a subclass of guarded rules, which generalizes the description logic DL-LiteR) in the case of atomic CQs, and also for general CQs if we place a minor syntactic restriction on the rule set. This is shown by means of a novel query rewriting algorithm that is specially tailored to handle transitivity rules. Third, for the identified decidable cases, we pinpoint the combined and data complexities of query entailment.
【Keywords】:
【Paper Link】 【Pages】:2727-2733
【Authors】: Pietro Baroni ; Massimiliano Giacomin ; Beishui Liao
【Abstract】: The adoption of a generic contrariness notion in ASPIC+ substantially enhances its expressiveness with respect to other formalisms for structured argumentation. In particular, it opens the way to novel investigation directions, like the use of multivalued logics in the construction of arguments. This paper points out however that in the current version of ASPIC+ a serious technical difficulty related with generic contrariness is present. With the aim of preserving the same level of generality, the paper provides a solution based on a novel notion of closure of the contrariness relation at the level of sets of formulas and an abstract representation of conflicts between sets of arguments. The proposed solution is shown to satisfy the same rationality postulates as ASPIC+ and represents a starting point for further technical and conceptual developments in structured argumentation.
【Keywords】:
【Paper Link】 【Pages】:2734-2740
【Authors】: Ringo Baumann ; Gerhard Brewka
【Abstract】: In this paper we combine two of the most important areas of knowledge representation, namely belief revision and (abstract) argumentation. More precisely, we show how AGM-style expansion and revision operators can be defined for Dung's abstract argumentation frameworks (AFs). Our approach is based on a reformulation of the original AGM postulates for revision in terms of monotonic consequence relations for AFs. The latter are defined via a new family of logics, called Dung logics, which satisfy the important property that ordinary equivalence in these logics coincides with strong equivalence for the respective argumentation semantics. Based on these logics we define expansion as usual via intersection of models. We show the existence of such operators. This is far from trivial and requires to study realizability in the context of Dung logics. We then study revision operators. We show why standard approaches based on a distance measure on models do not work for AFs and present an operator satisfying all postulates for a specific Dung logic.
【Keywords】:
【Paper Link】 【Pages】:2741-2747
【Authors】: Harald Beck ; Minh Dao-Tran ; Thomas Eiter
【Abstract】: Stream reasoning is the task of continuously deriving conclusions on streaming data. To get results instantly one evaluates a query repeatedly on recent data chunks selected by window operators. However, simply recomputing results from scratch is impractical for rule-based reasoning with semantics similar to Answer Set Programming, due to the trade-off between complexity and data throughput. To address this problem, we present a method to efficiently update models of a rule set. In particular, we show how an answer stream (model) of a LARS program can be incrementally adjusted to new or outdated input by extending truth maintenance techniques. We obtain in this way a means towards practical rule-based stream reasoning with nonmonotonic negation, various window operators and different forms of temporal reference.
【Keywords】:
【Paper Link】 【Pages】:2748-2754
【Authors】: Francesco Belardinelli ; Wiebe van der Hoek
【Abstract】: We introduce epistemic quantified boolean logic (EQBL), an extension of propositional epistemic logic with quantification over propositions. We show that EQBL can express relevant properties about agents’ knowledge in multi-agent contexts, such as “agent a knows as much as agent b”. We analyse the expressiveness of EQBL through a translation into monadic second-order logic, and provide completeness results w.r.t. various classes of Kripke frames. Finally, we prove that model checking EQBL is PSPACE-complete. Thus, the complexity of model checking EQBL is no harder than for (non-modal) quantified boolean logic.
【Keywords】:
【Paper Link】 【Pages】:2755-2761
【Authors】: Vaishak Belle ; Gerhard Lakemeyer
【Abstract】: Only knowing captures the intuitive notion that the beliefs of an agent are precisely those that follow from its knowledge base. While only knowing has a simple possible-world semantics in a single agent setting, the many agent case has turned out to be much more challenging. In a recent paper, we proposed an account which arguably extends only knowing to multiple agents in a natural way. However, the approach was limited in that the semantics cannot deal with infinitary notions such as common knowledge. In this work, we lift that serious limitation to obtain a first-order language with only knowing and common knowledge, allowing us to study the interaction between these notions for the very first time. By adding a simple form of public announcement, we then demonstrate how the muddy children puzzle can be cast in terms of logical implications given what is only known initially.
【Keywords】:
【Paper Link】 【Pages】:2762-2769
【Authors】: Vaishak Belle ; Hector J. Levesque
【Abstract】: High-level programming languages are an influential control paradigm for building agents that are purposeful in an incompletely known world. GOLOG, for example, allows us to write programs, with loops, whose constructs refer to an explicit world model axiomatized in the expressive language of the situation calculus. Over the years, GOLOG has been extended to deal with many other features, the claim being that these would be useful in robotic applications. Unfortunately, when robots are actually deployed, effectors and sensors are noisy, typically characterized over continuous probability distributions, none of which is supported in GOLOG, its dialects or its cousins. This paper presents ALLEGRO, a belief-based programming language for stochastic domains, that refashions GOLOG to allow for discrete and continuous initial uncertainty and noise. It is fully implemented and experiments demonstrate that ALLEGRO could be the basis for bridging high-level programming and probabilistic robotics technologies in a general way.
【Keywords】:
【Paper Link】 【Pages】:2770-2776
【Authors】: Vaishak Belle ; Andrea Passerini ; Guy Van den Broeck
【Abstract】: Weighted model counting (WMC) on a propositional knowledge base is an effective and general approach to probabilistic inference in a variety of formalisms, including Bayesian and Markov Networks. However, an inherent limitation of WMC is that it only admits the inference of discrete probability distributions. In this paper, we introduce a strict generalization of WMC called weighted model integration that is based on annotating Boolean and arithmetic constraints, and combinations thereof. This methodology is shown to capture discrete, continuous and hybrid Markov networks. We then consider the task of parameter learning for a fragment of the language. An empirical evaluation demonstrates the applicability and promise of the proposal.
【Keywords】:
【Paper Link】 【Pages】:2777-2783
【Authors】: Salem Benferhat ; Amélie Levray ; Karim Tabia ; Vladik Kreinovich
【Abstract】: Interval-based possibilistic logic is a flexible setting extending standard possibilistic logic such that each logical expression is associated with a sub-interval of [0,1]. This paper focuses on the fundamental issue of conditioning in the interval-based possibilistic setting. The first part of the paper first proposes a set of natural properties that an interval-based conditioning operator should satisfy. We then give a natural and safe definition for conditioning an interval-based possibility distribution. This definition is based on applying standard min-based or product-based conditioning on the set of all associated compatible possibility distributions. We analyze the obtained posterior distributions and provide a precise characterization of lower and upper endpoints of the intervals associated with interpretations. The second part of the paper provides an equivalent syntactic computation of interval-based conditioning when interval-based distributions are compactly encoded by means of interval-based possibilistic knowledge bases. We show that interval-based conditioning is achieved without extra computational cost comparing to conditioning standard possibilistic knowledge bases.
【Keywords】:
【Paper Link】 【Pages】:2784-2790
【Authors】: Bart Bogaerts ; Joost Vennekens ; Marc Denecker
【Abstract】: Approximation fixpoint theory (AFT) is an algebraical study of fixpoints of lattice operators. Recently, AFT was extended with the notion of a grounded fixpoint. This type of fixpoint formalises common intuitions from various application domains of AFT, including logic programming, default logic, autoepistemic logic and abstract argumentation frameworks. The study of groundedness was limited to exact lattice points; in this paper, we extend it to the bilattice: for an approximator A of O, we define A-groundedness. We show that all partial A-stable fixpoints are A-grounded and that the A-well-founded fixpoint is uniquely characterised as the least precise A-grounded fixpoint. We apply our theory to logic programming and study complexity.
【Keywords】:
【Paper Link】 【Pages】:2791-2797
【Authors】: Thomas Bolander ; Martin Holm Jensen ; François Schwarzentruber
【Abstract】: Epistemic planning is a very expressive framework that extends automated planning by the incorporation of dynamic epistemic logic (DEL). We provide complexity results on the plan existence problem for multi-agent planning tasks, focusing on purely epistemic actions with propositional preconditions. We show that moving from epistemic preconditions to propositional preconditions makes it decidable, more precisely in EXPSPACE. The plan existence problem is PSPACE-complete when the underlying graphs are trees and NP-complete when they are chains (including singletons). We also show PSPACE-hardness of the plan verification problem, which strengthens previous results on the complexity of DEL model checking.
【Keywords】:
【Paper Link】 【Pages】:2798-2804
【Authors】: Blai Bonet ; Hector Geffner
【Abstract】: We establish conditions under which memoryless policies and finite-state controllers that solve one partially observable non-deterministic problem (PONDP) generalize to other problems; namely, problems that have a similar structure and share the same action and observation space. This is relevant to generalized planning where plans that work for many problems are sought, and to transfer learning where knowledge gained in the solution of one problem is to be used on related problems. We use a logical setting where uncertainty is represented by sets of states and the goal is to be achieved with certainty. While this gives us crisp notions of solution policies and generalization, the account also applies to probabilistic PONDs, i.e., Goal POMDPs.
【Keywords】:
【Paper Link】 【Pages】:2805-2811
【Authors】: Richard Booth ; Giovanni Casini ; Thomas Andreas Meyer ; Ivan José Varzinczak
【Abstract】: Propositional Typicality Logic (PTL) is a recently proposed logic, obtained by enriching classical propositional logic with a typicality operator. In spite of the non-monotonic features introduced by the semantics adopted for the typicality operator, the obvious Tarskian definition of entailment for PTL remains monotonic and is therefore not appropriate. We investigate different (semantic) versions of entailment for PTL, based on the notion of Rational Closure as defined by Lehmann and Magidor for KLM-style conditionals, and constructed using minimality. Our first important result is an impossibility theorem showing that a set of proposed postulates that at first all seem appropriate for a notion of entailment with regard to typicality cannot be satis- fied simultaneously. Closer inspection reveals that this result is best interpreted as an argument for advocating the development of more than one type of PTL entailment. In the spirit of this interpretation, we define two primary forms of entailment for PTL and discuss their advantages and disadvantages.
【Keywords】:
【Paper Link】 【Pages】:2812-2818
【Authors】: Stefan Borgwardt ; Marco Cerami ; Rafael Peñaloza
【Abstract】: Fuzzy Description Logics (DLs) are used to represent and reason about vague and imprecise knowledge that is inherent to many application domains. It was recently shown that the complexity of reasoning in finitely valued fuzzy DLs is often not higher than that of the underlying classical DL. We show that this does not hold for fuzzy extensions of the light-weight DL EL, which is used in many biomedical ontologies, under the Lukasiewicz semantics. The complexity of reasoning increases from PTime to ExpTime, even if only one additional truth value is introduced. The same lower bound holds also for infinitely valued Lukasiewicz extensions of EL.
【Keywords】:
【Paper Link】 【Pages】:2819-2825
【Authors】: Stefan Borgwardt ; Veronika Thost
【Abstract】: Context-aware systems use data collected at runtime to recognize certain predefined situations and trigger adaptations. This can be implemented using ontology-based data access (OBDA), which augments classical query answering in databases by adopting the open-world assumption and including domain knowledge provided by an ontology. We investigate temporalized OBDA w.r.t. ontologies formulated in EL, a description logic that allows for efficient reasoning and is successfully used in practice. We consider a recently proposed temporalized query language that combines conjunctive queries with the operators of propositional linear temporal logic (LTL), and study both data and combined complexity of query entailment in this setting. We also analyze the satisfiability problem in the similar formalism EL-LTL.
【Keywords】:
【Paper Link】 【Pages】:2826-2832
【Authors】: Pierre Bourhis ; Markus Krötzsch ; Sebastian Rudolph
【Abstract】: Expressive query languages are gaining relevance in knowledge representation (KR), and new reasoning problems come to the fore. Especially query containment is interesting in this context. The problem is known to be decidable for many expressive query languages, but exact complexities are often missing. We introduce a new query language, guarded queries (GQ), which generalizes most known languages where query containment is decidable. GQs can be nested (more expressive), or restricted to linear recursion (less expressive). Our comprehensive analysis of the computational properties and expressiveness of (linear/nested) GQs also yields insights on many previous languages.
【Keywords】:
【Paper Link】 【Pages】:2833-2839
【Authors】: Marco Calautti ; Sergio Greco ; Cristian Molinaro ; Irina Trubitsyna
【Abstract】: Recent years have witnessed a great deal of interest in extending answer set programming with function symbols. Since the evaluation of a program with function symbols might not terminate and checking termination is undecidable, several classes of logic programs have been proposed where the use of function symbols is limited but the program evaluation is guaranteed to terminate. In this paper, we propose a novel class of logic programs whose evaluation always terminates. The proposed technique identifies terminating programs that are not captured by any of the current approaches. Our technique is based on the idea of measuring the size of terms and atoms to check whether the rule head size is bounded by the body, and performs a more fine-grained analysis than previous work. Rather than adopting an all-or-nothing approach (either we can say that the program is terminating or we cannot say anything), our technique can identify arguments that are "limited'' (i.e., where there is no infinite propagation of terms) even when the program is not entirely recognized as terminating. Identifying arguments that are limited can support the user in the problem formulation and help other techniques that use limited arguments as a starting point. Another useful feature of our approach is that it is able to leverage external information about limited arguments. We also provide results on the correctness, the complexity, and the expressivity of our technique.
【Keywords】:
【Paper Link】 【Pages】:2840-2846
【Authors】: Diego Calvanese ; Giuseppe De Giacomo ; Mikhail Soutchanski
【Abstract】: In this paper we investigate situation calculus action theories extended with ontologies, expressed as description logics TBoxes that act as state constraints. We show that this combination, while natural and desirable, is particularly problematic: it leads to undecidability of the simplest form of reasoning, namely satisfiability, even for the simplest kinds of description logics and the simplest kind of situation calculus action theories.
【Keywords】:
【Paper Link】 【Pages】:2847-2853
【Authors】: Diego Calvanese ; Marco Montali ; Ario Santoso
【Abstract】: Knowledge and Action Bases (KABs) have been put forward as a semantically rich representation of a domain, using a DL KB to account for its static aspects, and actions to evolve its extensional part over time, possibly introducing new objects. Recently, KABs have been extended to manage inconsistency, with ad-hoc verification techniques geared towards specific semantics. This work provides a twofold contribution along this line of research. On the one hand, we enrich KABs with a high-level, compact action language inspired by Golog, obtaining so called Golog-KABs (GKABs). On the other hand, we introduce a parametric execution semantics for GKABs, so as to elegantly accomodate a plethora of inconsistency-aware semantics based on the notion of repair. We then provide several reductions for the verification of sophisticated first-order temporal properties over inconsistency-aware GKABs, and show that it can be addressed using known techniques, developed for standard KABs.
【Keywords】:
【Paper Link】 【Pages】:2854-2860
【Authors】: Kinzang Chhogyal ; Abhaya C. Nayak ; Zhiqiang Zhuang ; Abdul Sattar
【Abstract】: When a belief state is represented as a probability function P, the resulting belief state of the contraction of a sentence (belief) from the original belief state P can be given by the probabilistic version of the Harper Identity. Specifically, the result of contracting P by a sentence h is taken to be the mixture of two states: the original state P, and the resultant state P~h of revising P by the negation of h. What proportion of P and P~h should be used in this mixture remains an open issue and is largely ignored in literature. In this paper, we first classify different belief states by their stability, and then exploit the quantitative nature of probabilities and combine it with the basic ideas of argumentation theory to determine the mixture proportions. We, therefore, propose a novel approach to probabilistic belief contraction using argumentation.
【Keywords】:
【Paper Link】 【Pages】:2861-2868
【Authors】: Arthur Choi ; Guy Van den Broeck ; Adnan Darwiche
【Abstract】: Probabilistic sentential decision diagrams (PSDDs) are a tractable representation of structured probability spaces, which are characterized by complex logical constraints on what constitutes a possible world. We develop general-purpose techniques for probabilistic reasoning and learning with PSDDs, allowing one to compute the probabilities of arbitrary logical formulas and to learn PSDDs from incomplete data. We illustrate the effectiveness of these techniques in the context of learning preference distributions, to which considerable work has been devoted in the past. We show, analytically and empirically, that our proposed framework is general enough to support diverse and complex data and query types. In particular, we show that it can learn maximum-likelihood models from partial rankings, pairwise preferences, and arbitrary preference constraints. Moreover, we show that it can efficiently answer many queries exactly, from expected and most likely rankings, to the probability of pairwise preferences, and diversified recommendations. This case study illustrates the effectiveness and flexibility of the developed PSDD framework as a domain-independent tool for learning and reasoning with structured probability spaces.
【Keywords】:
【Paper Link】 【Pages】:2869-2875
【Authors】: Quentin Cohen-Solal ; Maroua Bouzid ; Alexandre Niveau
【Abstract】: In this paper, we propose a qualitative formalism for representing and reasoning about time at different scales. It extends the algebra of Euzenat and overcomes its major limitations, allowing one to reason about relations between points and intervals. Our approach is more expressive than the other algebras of temporal relations: for instance, some relations are more relaxed than those in Allen's algebra, while others are stricter. In particular, it enables the modeling of imprecise, gradual, or intuitive relations, such as "just before" or "almost meet." In addition, we give several results about how a relation changes when considered at different granularities. Finally, we provide an algorithm to compute the algebraic closure of a temporal constraint network in our formalism, which can be used to check its consistency.
【Keywords】:
【Paper Link】 【Pages】:2876-2882
【Authors】: Sylvie Coste-Marquis ; Sébastien Konieczny ; Jean-Guy Mailly ; Pierre Marquis
【Abstract】: Change in abstract argumentation frameworks (AFs) is a very active topic. Especially, the problem of enforcing a set E of arguments, i.e., ensuring that E is an extension (or a subset of an extension) of a given AF F, has received a particular attention in the recent years. In this paper, we define a new family of enforcement operators, for which enforcement can be achieved by adding new arguments (and attacks) to F (as in previous approaches to enforcement), but also by questioning some attacks (and non-attacks) of F. This family includes previous enforcement operators, but also new ones for which the success of the enforcement operation is guaranteed. We show how the enforcement problem for the operators of the family can be modeled as a pseudo-Boolean optimization problem. Intensive experiments show that the method is practical and that it scales up well.
【Keywords】:
【Paper Link】 【Pages】:2883-2889
【Authors】: Bernardo Cuenca Grau ; Evgeny Kharlamov ; Egor V. Kostylev ; Dmitriy Zheleznyakov
【Abstract】: We study confidentiality enforcement in ontologies under the Controlled Query Evaluation framework, where a policy specifies the sensitive information and a censor ensures that query answers that may compromise the policy are not returned. We focus on censors that ensure confidentiality while maximising information access, and consider both Datalog and the OWL 2 profiles as ontology languages.
【Keywords】:
【Paper Link】 【Pages】:2890-2896
【Authors】: Sofie De Clercq ; Steven Schockaert ; Ann Nowé ; Martine De Cock
【Abstract】: Boolean games are a game-theoretic framework in which propositional logic is used to describe agents’ goals. In this paper we investigate how agents in Boolean games can reach an efficient and fair outcome through a simple negotiation protocol. We are particularly interested in settings where agents only have incomplete knowledge about the preferences of others. After explaining how generalized possibilistic logic can be used to compactly encode such knowledge, we analyze how a lack of knowledge affects the agreement outcome. In particular, we show how knowledgeable agents can obtain a more desirable outcome than others.
【Keywords】:
【Paper Link】 【Pages】:2897-2903
【Authors】: Ronald de Haan ; Martin Kronegger ; Andreas Pfandler
【Abstract】: Planning is an important AI task that gives rise to many hard problems. In order to come up with efficient algorithms for this setting, it is important to understand the sources of complexity. For planning problems that are beyond NP, identifying fragments that allow an efficient reduction to SAT can be a feasible approach due to the great performance of modern SAT solvers. In this paper, we use the framework of parameterized complexity theory to obtain a more fine-grained complexity analysis of natural planning problems beyond NP. With this analysis we are able to point out several variants of planning where the structure in the input makes encodings into SAT feasible. We complement these positive results with some hardness results and a new machine characterization for the intractability class exists * for allk-W[P].
【Keywords】:
【Paper Link】 【Pages】:2904-2910
【Authors】: James P. Delgrande ; Bryan Renne
【Abstract】: In this paper we present a theory of qualitative probability. Work in the area goes back at least to de Finetti. The usual approach is to specify a binary operator ≼ with Φ ≼ ψ having the intended interpretation that Φ is not more probable than ψ. We generalise these approaches by extending the domain of the operator ≼ from the set of events to the set of finite sequences of events. If Φ and Ψ are finite sequences of events, Φ ≼ Ψ has the intended interpretation that the summed probabilities of the elements of Φ is not greater than the sum of those of Ψ. We provide a sound and complete axiomatisation for this operator over finite outcome sets, and show that this theory is sufficiently powerful to capture the results of axiomatic probability theory. We argue that our approach is simpler and more perspicuous than previous accounts. As well, we prove that our approach generalises the two major accounts for finite outcome sets.
【Keywords】:
【Paper Link】 【Pages】:2911-2917
【Authors】: Jérôme Delobelle ; Sébastien Konieczny ; Srdjan Vesic
【Abstract】: We study the problem of aggregation of Dung's abstract argumentation frameworks. Some operators for this aggregation have been proposed, as well as some rationality properties for this process. In this work we study the existing operators and new ones that we propose in light of the proposed properties, highlighting the fact that existing operators do not satisfy a lot of these properties. The conclusions are that on one hand none of the existing operators seem fully satisfactory, but on the other hand some of the properties proposed so far seem also too demanding.
【Keywords】:
【Paper Link】 【Pages】:2918-2925
【Authors】: Tommaso Di Noia ; Thomas Lukasiewicz ; Maria Vanina Martínez ; Gerardo I. Simari ; Oana Tifrea-Marciuska
【Abstract】: The tastes of a user can be represented in a natural way by using qualitative preferences. In this paper, we explore how ontological knowledge expressed via existential rules can be combined with CP-theories to (i) represent qualitative preferences along with domain knowledge, and (ii) perform preference-based answering of conjunctive queries (CQs). We call these combinations ontological CP-theories (OCP-theories). We define skyline and k-rank answers to CQs based on the user’s preferences encoded in an OCP-theory, and provide an algorithm for computing them. We also provide precise complexity (including data tractability) results for deciding consistency, dominance, and CQ skyline membership for OCP-theories.
【Keywords】:
【Paper Link】 【Pages】:2926-2932
【Authors】: Martin Diller ; Adrian Haret ; Thomas Linsbichler ; Stefan Rümmele ; Stefan Woltran
【Abstract】: Argumentation is an inherently dynamic process. Consequently, recent years have witnessed tremendous research efforts towards an understanding of how the seminal AGM theory of belief change can be applied to argumentation, in particular for Dung's abstract argumentation frameworks (AFs). However, none of the attempts has yet succeeded in handling the natural situation where the revision of an AF is guaranteed to be representable by an AF as well. In this work, we present a generic solution to this problem which applies to many prominent I-maximal argumentation semantics. In order to prove a full representation theorem, we make use of recent advances in both areas of argumentation and belief change. In particular, we utilize the concepts of realizability in argumentation and the notion of compliance as used in Horn revision.
【Keywords】:
【Paper Link】 【Pages】:2933-2939
【Authors】: Didier Dubois ; Henri Prade ; Agnès Rico
【Abstract】: The square of opposition is a structure involving two involutive negations and relating quantified statements, invented in Aristotle time. Rediscovered in the second half of the XXth century, and advocated as being of interest for understanding conceptual structures and solving problems in paraconsistent logics, the square of opposition has been recently completed into a cube, which corresponds to the introduction of a third negation. Such a cube can be encountered in very different knowledge representation formalisms, such as modal logic, possibility theory in its all-or-nothing version, formal concept analysis, rough set theory and abstract argumentation. After restating these results in a unified perspective, the paper proposes a graded extension of the cube and shows that several qualitative, as well as quantitative formalisms, such as Sugeno integrals used in multiple criteria aggregation and qualitative decision theory, or yet belief functions and Choquet integrals, are amenable to transformations that form graded cubes of opposition. This discovery leads to a new perspective on many knowledge representation formalisms, laying bare their underlying common features. The cube of opposition exhibits fruitful parallelisms between different formalisms, which leads to highlight some missing components present in one formalism and currently absent from another.
【Keywords】:
【Paper Link】 【Pages】:2940-2947
【Authors】: Alireza Ensan ; Eugenia Ternovska
【Abstract】: We propose a versatile framework for combining knowledge bases in modular systems with preferences. In our formalism, each module (knowledge base) can be specified in a different language. We define the notion of a preference-based modular system that includes a formalization of meta-preferences. We prove that our formalism is robust in the sense that the operations for combining modules preserve the notion of a preference-based modular system. Finally, we formally demonstrate correspondences between our framework and the related preference formalisms of cp-nets and preference-based planning. Our framework allows one to use these preference formalisms (and others) in combination, in the same modular system.
【Keywords】:
【Paper Link】 【Pages】:2948-2954
【Authors】: Tuan-Fang Fan ; Churn-Jung Liau
【Abstract】: Justification logic originated from the study of the logic of proofs. However, in a more general setting, it may be regarded as a kind of explicit epistemic logic. In such logic, the reasons why a fact is believed are explicitly represented as justification terms. Traditionally, the modeling of uncertain beliefs is crucially important for epistemic reasoning. While graded modal logics interpreted with possibility theory semantics have been successfully applied to the representation and reasoning of uncertain beliefs, they cannot keep track of the reasons why an agent believes a fact. The objective of this paper is to extend the graded modal logics with explicit justifications. We introduce a possibilistic justification logic, present its syntax and semantics, and investigate its meta-properties, such as soundness, completeness, and realizability.
【Keywords】:
【Paper Link】 【Pages】:2955-2963
【Authors】: Liangda Fang ; Yongmei Liu ; Ximing Wen
【Abstract】: In a seminal paper, Lin and Reiter introduced the notion of progression for basic action theories in the situation calculus. Recently, Fang and Liu extended the situation calculus to account for multi-agent knowledge and belief change. In this paper, based on their framework, we investigate progression of both belief and knowledge in the single-agent propositional case. We first present a model-theoretic definition of progression of knowledge and belief. We show that for propositional actions, i.e., actions whose precondition axioms and successor state axioms are propositional formulas, progression of knowledge and belief reduces to forgetting in the logic of knowledge and belief, which we show is closed under forgetting. Consequently, we are able to show that for propositional actions, progression of knowledge and belief is always definable in the logic of knowledge and belief.
【Keywords】:
【Paper Link】 【Pages】:2964-2970
【Authors】: Luis Fariñas del Cerro ; Andreas Herzig ; Ezgi Iraz Su
【Abstract】: We add epistemic modal operators to the language of here-and-there logic and define epistemic here-and-there models. We then successively define epistemic equilibrium models and autoepistemic equilibrium models. The former are obtained from here-and-there models by the standard minimisation of truth of Pearce’s equilibrium logic; they provide an epistemic extension of that logic. The latter are obtained from the former by maximising the set of epistemic possibilities; they provide a new semantics for Gelfond’s epistemic specifications.
【Keywords】:
【Paper Link】 【Pages】:2971-2977
【Authors】: Cristina Feier ; David Carral ; Giorgio Stefanoni ; Bernardo Cuenca Grau ; Ian Horrocks
【Abstract】: Combined approaches have become a successful technique for CQ answering over ontologies. Existing algorithms, however, are restricted to the logics underpinning the OWL 2 profiles. Our goal is to make combined approaches applicable to a wider range of ontologies. We focus on RSA: a class of Horn ontologies that extends the profiles while ensuring tractability of standard reasoning. We show that CQ answering over RSA ontologies without role composition is feasible in NP. Our reasoning procedure generalises the combined approach for ELHO and DL-LiteR using an encoding of CQ answering into fact entailment w.r.t. a logic program with function symbols and stratified negation. Our results have significant practical implications since many out-of-profile Horn ontologies are RSA.
【Keywords】:
【Paper Link】 【Pages】:2978-2984
【Authors】: Paolo Felli ; Tim Miller ; Christian J. Muise ; Adrian R. Pearce ; Liz Sonenberg
【Abstract】: Agents can be thought of as following a social behaviour, depending on the context in which they are interacting. We devise a computationally grounded mechanism to represent and reason about others in social terms, reflecting the local perspective of an agent (first-person view), to support both stereotypical and empathetic reasoning. We use a hierarchy of agent models to discriminate which behaviours of others are plausible, and decide which behaviour for ourselves is socially acceptable, i.e. conforms to the social context. To this aim, we investigate the implications of considering agents capable of various degrees of theory of mind, and discuss a scenario showing how this affects behaviour.
【Keywords】:
【Paper Link】 【Pages】:2985-2991
【Authors】: Sarah Alice Gaggl ; Sebastian Rudolph ; Hannes Strass
【Abstract】: Abstract dialectical frameworks (ADFs) are a powerful generalization of Dung’s abstract argumentation frameworks. ADFs allow to model argumentation scenarios such that ADF semantics then provide interpretations of the scenarios. Among the considerable number of ADF semantics, the naive-based ones are built upon the fundamental concept of conflict-freeness. Intuitively, a three-valued interpretation of an ADF’s statements is conflict-free iff all true statements can possibly be accepted, and all false statements cannot possibly be accepted. In this paper, we perform an exhaustive analysis of the computational complexity of naive-based semantics. The results are quite interesting, for some of them involve little-known classes of the so-called Boolean hierarchy (another hierarchy in between classes of the polynomial hierarchy). Furthermore in credulous and sceptical entailment, the complexity can be different depending on whether we check for truth or falsity of a specific statement.
【Keywords】:
【Paper Link】 【Pages】:2992-2998
【Authors】: Georg Gottlob ; Marco Manna ; Andreas Pieris
【Abstract】: We consider the scenario of ontology-based query answering. It is generally accepted that true scalability in this setting can only be achieved via query rewriting, which in turn allows for the exploitation of standard RDBMSs. In this work, we close two open fundamental questions related to query rewriting. We establish that linear existential rules are polynomially combined rewritable, while full linear rules are polynomially (purely) rewritable; in both cases, the target query language consists of first-order or non-recursive Datalog queries. An immediate consequence of our results is that DLR-Lite_R, the extension of DL-Lite_R with n-ary roles, is polynomially combined rewritable.
【Keywords】:
【Paper Link】 【Pages】:2999-3007
【Authors】: Georg Gottlob ; Andreas Pieris
【Abstract】: SPARQL is the de facto language for querying RDF data, since its standardization in 2008. A new version, called SPARQL 1.1, was released in 2013, with the aim of enriching the 2008 language with reasoning capabilities to deal with RDFS and OWL vocabularies, and a mechanism to express navigation patterns through regular expressions. However, SPARQL 1.1 is not powerful enough for expressing some relevant navigation patterns, and it misses a general form of recursion. In this work, we focus on OWL 2 QL and we propose TriQ-Lite 1.0, a tractable rule-based formalism that supports the above functionalities, and thus it can be used for querying RDF data. Unlike existing composite approaches, our formalism has simple syntax and semantics in the same spirit as good old Datalog.
【Keywords】:
【Paper Link】 【Pages】:3008-3014
【Authors】: Gianluigi Greco ; Jérôme Lang
【Abstract】: We study a general class of multiagent optimization problems, together with a compact representation language of utilities based on weighted propositional formulas. We seek solutions maximizing utilitarian social welfare as well as fair solutions maximizing the utility of the least happy agent. We show that many problems can be expressed in this setting, such as fair division of indivisible goods, some multiwinner elections, or multifacility location. We focus on the complexity of finding optimal solutions, and we identify the tractability boarder between polynomial and NP-hard settings, along several parameters: the syntax of formulas, the allowed weights, as well as the number of agents, propositional symbols, and formulas per agent.
【Keywords】:
【Paper Link】 【Pages】:3015-3021
【Authors】: Víctor Gutiérrez-Basulto ; Jean Christoph Jung ; Thomas Schneider
【Abstract】: We study temporal description logics (TDLs) based on the branching-time temporal logic CTL and the lightweight DL EL in the presence of rigid roles and restricted TBoxes. While TDLs designed in this way are known to be inherently nonelementary or even undecidable over general TBoxes, there is hope for a better computational behaviour over acyclic or empty TBoxes. We begin by showing that the basic DL ALC combined with CTL in the described way is indeed decidable, but still inherently nonelementary. As our main contribution, we identify several TDLs of elementary complexity, obtained by combining EL with CTL fragments that allow only restricted sets of temporal operators. We obtain upper complexity bounds ranging from PTime to coNExpTime and mostly tight lower bounds. This contrasts the fact that the respective ALC variants are already inherently nonelementary.
【Keywords】:
【Paper Link】 【Pages】:3022-3033
【Authors】: Joseph Y. Halpern
【Abstract】: The original Halpern-Pearl definition of causality was updated in the journal version of the paper to deal with some problems pointed out by Hopkins and Pearl. Here the definition is modified yet again, in a way that (a) leads to a simpler definition, (b) handles the problems pointed out by Hopkins and Pearl, and many others, (c) gives reasonable answers (that agree with those of the original and updated definition) in the standard problematic examples of causality, and (d) has lower complexity than either the original or updated definitions.
【Keywords】:
【Paper Link】 【Pages】:3034-3040
【Authors】: Peter Hansen ; Carsten Lutz ; Inanç Seylan ; Frank Wolter
【Abstract】: We propose a new type of algorithm for computing first-order (FO) rewritings of concept queries under ELHdr-TBoxes. The algorithm is tailored towards efficient implementation, yet complete. It outputs a succinct non-recursive datalog rewriting if the input is FO-rewritable and otherwise reports non-FO-rewritability. We carry out experiments with real-world ontologies which demonstrate excellent performance in practice and show that TBoxes originating from applications admit FO-rewritings of reasonable size in almost all cases, even when in theory such rewritings are not guaranteed to exist.
【Keywords】:
【Paper Link】 【Pages】:3041-3047
【Authors】: Adrian Haret ; Stefan Rümmele ; Stefan Woltran
【Abstract】: Belief merging is a central operation within the field of belief change and addresses the problem of combining multiple, possibly mutually inconsistent knowledge bases into a single, consistent one. A current research trend in belief change is concerned with tailored representation theorems for fragments of logic, in particular Horn logic. Hereby, the goal is to guarantee that the result of the change operations stays within the fragment under consideration. While several such results have been obtained for Horn revision and Horn contraction, merging of Horn theories has been neglected so far. In this paper, we provide a novel representation theorem for Horn merging by strengthening the standard merging postulates. Moreover, we present a concrete Horn merging operator satisfying all postulates.
【Keywords】:
【Paper Link】 【Pages】:3048-3054
【Authors】: André Hernich ; Carsten Lutz ; Ana Ozaki ; Frank Wolter
【Abstract】: Schema.org is an initiative by the major search engine providers Bing, Google, Yahoo, and Yandex that provides a collection of ontologies which webmasters can use to mark up their pages. Schema.org comes without a formal language definition and without a clear semantics. We formalize the language of Schema.org as a Description Logic (DL) and study the complexity of querying data using (unions of) conjunctive queries in the presence of ontologies formulated in this DL (from several perspectives). While querying is intractable in general, we identify various cases in which it is tractable and where queries are even rewritable into FO queries or datalog programs.
【Keywords】:
【Paper Link】 【Pages】:3055-3061
【Authors】: Anthony Hunter
【Abstract】: Computational models of argument could play a valuable role in persuasion technologies for behaviour change (e.g. persuading a user to eat a more healthy diet, or to drink less, or to take more exercise, or to study more conscientiously, etc). For this, the system (the persuader) could present arguments to convince the user (the persuadee). In this paper, we consider asymmetric dialogues where only the system presents arguments, and the system maintains a model of the user to determine the best choice of arguments to present (including counterarguments to key arguments believed to be held by the user). The focus of the paper is on the user model, including how we update it as the dialogue progresses, and how we use it to make optimal choices for dialogue moves.
【Keywords】:
【Paper Link】 【Pages】:3062-3068
【Authors】: Aaron Hunter ; Richard Booth
【Abstract】: Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Ferme and Hansson, and we examine its properties. In particular, we show how trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information. When multiple reporting agents are involved, we use a distance function over states to represent differing degrees of trust; this ensures that the most trusted reports will be believed.
【Keywords】:
【Paper Link】 【Pages】:3069-3075
【Authors】: Jianmin Ji ; Hai Wan ; Ziwei Huo ; Zhenfeng Yuan
【Abstract】: A consequence of a logic program is a consistent set of literals that are satisfied by every answer set. The well-founded model is a consequence that can be used to simplify the logic program. In this paper, we extend the notion of well-founded models to consequences for simplifying disjunctive logic programs (DLPs) in a general manner. Specifically, we provide two main notions, strong reliable set and weak reliable set, and show that a DLP is strongly equivalent to the simplified program if and only if the consequence is a strong reliable set, and they have the same answer sets if and only if the consequence is a weak reliable set. Then we provide computational complexity on identifying both notions. In addition, we provide an algorithm to compute some strong reliable sets and show that the approach is an extension of the well-founded model in simplifying logic programs.
【Keywords】:
【Paper Link】 【Pages】:3076-3083
【Authors】: Jianmin Ji ; Jia-Huai You ; Yisong Wang
【Abstract】: Forgetting is an important mechanism for logic-based agent systems. A recent interest has been in the desirable properties of forgetting in answer set programming (ASP)and their impact on the design of forgetting operators. It is known that some subsets of these propertiesare incompatible, i.e., they cannot be satisfied at the same time. In this paper, we are interested in the question onthe largest set Δ of pairs (Π, V), where Π is a logic program and V is a set of atoms, such that a forgetting operator exists that satisfies all the desirable properties for each (Π, V) in Δ. We answer this question positively by discovering the precise condition under which the knowledge forgetting, a well-established approach to forgetting in ASP, satisfies the property of strong persistence, which leads to a sufficient and necessary condition for a forgetting operator to satisfy all the desirable properties proposed in the literature. We explore computational complexities on checking the condition and present a syntactic characterization which can serve as the basis of computing knowledge forgetting in ASP.
【Keywords】:
【Paper Link】 【Pages】:3084-3090
【Authors】: Cezary Kaliszyk ; Josef Urban ; Jirí Vyskocil
【Abstract】: Large formal mathematical knowledge bases encode considerable parts of advanced mathematics and exact science, allowing deep semantic computer assistance and verification of complicated theories down to the atomic logical rules. An essential part of automated reasoning over such large theories are methods learning selection of relevant knowledge from the thousands of proofs in the corpora. Such methods in turn rely on efficiently computable features characterizing the highly structured and inter-related mathematical statements. In this work we (i) propose novel semantic features characterizing the statements in such large semantic knowledge bases, (ii) propose and carry out their efficient implementation using deductive-AI data-structures such as substitution trees and discrimination nets, and (iii) show that they significantly improve the strength of existing knowledge selection methods and automated reasoning methods over the large formal knowledge bases. In particular, on a standard large-theory benchmark we improve the average predicted rank of a mathematical statement needed for a proof by 22% in comparison with state of the art. This allows us to prove 8% more theorems in comparison with state of the art.
【Keywords】:
【Paper Link】 【Pages】:3091-3097
【Authors】: Mark Kaminski ; Bernardo Cuenca Grau
【Abstract】: We study the problem of rewriting an ontology O1 expressed in a DL L1 into an ontology O2 in a Horn DL L2 such that O1 and O2 are equisatisfiable when extended with an arbitrary dataset. Ontologies that admit such rewritings are amenable to reasoning techniques ensuring tractability in data complexity. After showing undecidability whenever L1 extends ALCF, we focus on devising efficiently checkable conditions that ensure existence of a Horn rewriting. By lifting existing techniques for rewriting Disjunctive Datalog programs into plain Datalog to the case of arbitrary first-order programs with function symbols, we identify a class of ontologies that admit Horn rewritings of polynomial size. Our experiments indicate that many real-world ontologies satisfy our sufficient conditions and thus admit polynomial Horn rewritings.
【Keywords】:
【Paper Link】 【Pages】:3098-3105
【Authors】: Tobias Kaminski ; Matthias Knorr ; João Leite
【Abstract】: Description Logic (DL) based ontologies and non-monotonic rules provide complementary features whose combination is crucial in many applications. In hybrid knowledge bases (KBs), which combine both formalisms, for large real-world applications, often integrating knowledge originating from different sources, inconsistencies can easily occur. These commonly trivialize standard reasoning and prevent us from drawing any meaningful conclusions. When restoring consistency by changing the KB is not possible, paraconsistent reasoning offers an alternative by allowing us to obtain meaningful conclusions from its consistent part. In this paper, we address the problem of efficiently obtaining meaningful conclusions from (possibly inconsistent) hybrid KBs. To this end, we define two paraconsistent semantics for hybrid KBs which, beyond their differentiating properties, are faithful to well-known paraconsistent semantics as well as the non-paraconsistent logic they extend, and tractable if reasoning in the DL component is.
【Keywords】:
【Paper Link】 【Pages】:3106-3112
【Authors】: Mélanie König ; Michel Leclère ; Marie-Laure Mugnier
【Abstract】: We address the issue of Ontology-Based Query Answering (OBQA), which seeks to exploit knowledge expressed in ontologies when querying data. Ontologies are represented in the framework of existential rules (aka Datalog+/-). A commonly used technique consists in rewriting queries into unions of conjunctive queries (UCQs). However, the obtained queries can be prohibitively large in practice. A well-known source of combinatorial explosion are very simple rules, typically expressing taxonomies and relation signatures. We propose a rewriting technique, which consists in compiling these rules into a preorder on atoms and embedding this preorder into the rewriting process. This allows to compute compact rewritings that can be considered as ``pivotal'' representations, in the sense that they can be evaluated by different kinds of database systems. The provided algorithm computes a sound, complete and minimal UCQ rewriting, if one exists. Experiments show that this technique leads to substantial gains, in terms of size and runtime, and scales on very large ontologies. We also compare to other tools for OBQA with existential rules and related lightweight description logics.
【Keywords】:
【Paper Link】 【Pages】:3113-3119
【Authors】: Naiqi Li ; Yongmei Liu
【Abstract】: When Golog programs are used to control agents' behaviour in a high-level manner, their partial correctness naturally becomes an important concern. In this paper we propose a sound but incomplete method for automatic verification of partial correctness of Golog programs. We introduce the notion of extended regression, which reduces partial correctness of Golog programs to first-order entailment problems. During the process loop invariants are automatically discovered by heuristic methods. We propose progression of small models wrt Golog programs, which are used to filter out too strong heuristic candidates. In this way we combine the methods of static and dynamic analysis from the software engineering community. Furthermore, our method can also be adapted to verify state constraints. Experiments show that our method can not only handle sequential and nested loops uniformly in a reasonable among of time, but also be used to discover succinct and comprehensible loop invariants and state constraints.
【Keywords】:
【Paper Link】 【Pages】:3120-3126
【Authors】: Carsten Lutz ; Inanç Seylan ; Frank Wolter
【Abstract】: In the context of ontology-based data access with description logics (DLs), we study ontology-mediated queries in which selected predicates can be closed (OMQCs). In particular, we contribute to the classification of the data complexity of such queries in several relevant DLs. For the case where only concept names can be closed, we tightly link this question to the complexity of surjective CSPs. When also role names can be closed, we show that a full complexity classification is equivalent to classifying the complexity of all problems in coNP, thus currently out of reach. We also identify a class of OMQCs based on ontologies formulated in DL-LiteR that are guaranteed to be tractable and even FO-rewritable.
【Keywords】:
【Paper Link】 【Pages】:3127-3133
【Authors】: Boris Motik ; Yavor Nenov ; Robert Piro ; Ian Horrocks
【Abstract】: Materialisation precomputes all consequences of a set of facts and a datalog program so that queries can be evaluated directly (i.e., independently from the program). Rewriting optimises materialisation for datalog programs with equality by replacing all equal constants with a single representative; and incremental maintenance algorithms can efficiently update a materialisation for small changes in the input facts. Both techniques are critical to practical applicability of datalog systems; however, we are unaware of an approach that combines rewriting and incremental maintenance. In this paper we present the first such combination, and we show empirically that it can speed up updates by several orders of magnitude compared to using either rewriting or incremental maintenance in isolation.
【Keywords】:
【Paper Link】 【Pages】:3134-3140
【Authors】: Mehrdad Oveisi ; James P. Delgrande ; Fred Popowich ; Francis Jeffry Pelletier
【Abstract】: The AGM paradigm of belief change studies the dynamics of belief states in light of new information. Finding, or even approximating, dependent or relevant beliefs to a change is valuable because, for example, it can narrow the set of beliefs considered during belief change operations. Gärdenfors' preservation criterion (GPC) suggests that formulas independent of a belief change should remain intact. GPC allows to build dependence relations that are theoretically linked with belief change. Such dependence relations can in turn be used as a theoretical benchmark against which to evaluate other approximate dependence or relevance relations. There are already some studies, based on GPC, on the parallelism between belief change and dependence. One study offers a dependence relation parallel to AGM contraction for belief sets. Another study links base dependence relation to a more general belief base contraction, saturated kernel contraction. Here we offer yet a more general parallelism between kernel contraction and base dependence. At this level of generalization, different types of base dependence emerge. We prove that this differentiation of base dependence types is a result of possible redundancy in the base. This provides a theoretical means to distinguish between redundant and informative parts of a belief base.
【Keywords】:
【Paper Link】 【Pages】:3141-3148
【Authors】: Umut Oztok ; Adnan Darwiche
【Abstract】: The sentential decision diagram (SDD) has been recently proposed as a new tractable representation of Boolean functions that generalizes the influential ordered binary decision diagram (OBDD). Empirically, compiling CNFs into SDDs has yielded significant improvements in both time and space over compiling them into OBDDs, using a bottom-up compilation approach. In this work, we present a top-down CNF to SDD compiler that is based on techniques from the SAT literature. We compare the presented compiler empirically to the state-of-the-art, bottom-up SDD compiler, showing orders-of-magnitude improvements in compilation time.
【Keywords】:
【Paper Link】 【Pages】:3149-3155
【Authors】: Andreas Pfandler ; Stefan Rümmele ; Johannes Peter Wallner ; Stefan Woltran
【Abstract】: Parameterized complexity is a well recognized vehicle for understanding the multitude of complexity AI problems typically exhibit. However, the prominent problem of belief revision has not undergone a systematic investigation in this direction yet. This is somewhat surprising, since by its very nature of involving a knowledge base and a revision formula, this problem provides a perfect playground for investigating novel parameters. Among our results on the parameterized complexity of revision is thus a versatile fpt algorithm which is based on the parameter of the number of atoms shared by the knowledge base and the revision formula. Towards identifying the frontier between parameterized tractability and intractability, we also give hardness results for classes such as co-W[1], para-Theta2P and FPTNP[f(k)]
【Keywords】:
【Paper Link】 【Pages】:3156-3163
【Authors】: Nico Potyka ; Matthias Thimm
【Abstract】: The classical probabilistic entailment problem is to determine upper and lower bounds on the probability of formulas, given a consistent set of probabilistic assertions. We generalize this problem by omitting the consistency assumption and, thus, provide a general framework for probabilistic reasoning under inconsistency. To do so, we utilize inconsistency measures to determine probability functions that are closest to satisfying the knowledge base. We illustrate our approach on several examples and show that it has both nice formal and computational properties.
【Keywords】:
【Paper Link】 【Pages】:3164-3170
【Authors】: Abhay Prakash ; Manoj Kumar Chinnakotla ; Dhaval Patel ; Puneet Garg
【Abstract】: Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness, unexpectedness or weirdness. In this paper, we propose a novel approach for mining entity trivia from their Wikipedia pages. Given an entity, our system extracts relevant sentences from its Wikipedia page and produces a list of sentences ranked based on their interestingness as trivia. At the heart of our system lies an interestingness ranker which learns the notion of interestingness, through a rich set of domain-independent linguistic and entity based features. Our ranking model is trained by leveraging existing user-generated trivia data available on the Web instead of creating new labeled data. We evaluated our system on movies domain and observed that the system performs significantly better than the defined baselines. A thorough qualitative analysis of the results revealed that our rich set of features indeed help in surfacing interesting trivia in the top ranks.
【Keywords】:
【Paper Link】 【Pages】:3171-3177
【Authors】: Jörg Pührer
【Abstract】: We investigate fundamental properties of three-valued semantics for abstract dialectical frameworks (ADFs). In particular, we deal with realizability, i.e., the question whether there exists an ADF that has a given set of interpretations as its semantics. We provide necessary and sufficient conditions that hold for a set of three-valued interpretations whenever there is an ADF realizing it under admissible, complete, grounded, or preferred semantics. Moreover, we discuss how to construct such an ADF in case of realizability. Our results lay the ground for studying the expressiveness of ADFs under three-valued semantics. As a first application we study implications of our results on the existence of certain join operators on ADFs.
【Keywords】:
【Paper Link】 【Pages】:3178-3185
【Authors】: David Rajaratnam ; Michael Thielscher
【Abstract】: General Game Playing aims to create AI systems that can understand the rules of new games and learn to play them effectively without human intervention. The recent proposal for general game-playing robots extends this to AI systems that play games in the real world. Execution monitoring becomes a necessity when moving from a virtual to a physical environment, because in reality actions may not be executed properly and (human) opponents may make illegal game moves. We develop a formal framework for execution monitoring by which an action theory that provides an axiomatic description of a game is automatically embedded in a meta-game for a robotic player — called the arbiter — whose role is to monitor and correct failed actions. This allows for the seamless encoding of recovery behaviours within a meta-game, enabling a robot to recover from these unexpected events.
【Keywords】:
【Paper Link】 【Pages】:3186-3192
【Authors】: Sebastian Rudolph ; Christian Sacarea ; Diana Troanca
【Abstract】: Formal Concept Analysis (FCA) is a prominent field of applied mathematics using object-attribute relationships to define formal concepts — groups of objects with common attributes — which can be ordered into conceptual hierarchies, so-called concept lattices. We consider the problem of satisfiability of membership constraints, i.e., to determine if a formal concept exists whose object and attribute set include certain elements and exclude others. We analyze the computational complexity of this problem in general and for restricted forms of membership constraints. We perform the same analysis for generalizations of FCA to incidence structures of arity three (objects, attributes and conditions) and higher. We present a generic answer set programming (ASP) encoding of the membership constraint satisfaction problem, which allows for deploying available highly optimized ASP tools for its solution. Finally, we discuss the importance of membership constraints in the context of navigational approaches to data analysis.
【Keywords】:
【Paper Link】 【Pages】:3193-3199
【Authors】: Sebastian Rudolph ; Michaël Thomazo
【Abstract】: Existential rules (also known as Datalog+/- or tuple-generating dependencies) have been intensively studied in recent years as a prominent formalism in knowledge representation and database systems. We consider them here as a querying formalism, extending classical Datalog, the language of deductive databases. It is well known that the classes of databases recognized by (Boolean) existential rule queries are closed under homomorphisms. Also, due to the existence of a semi-decision procedure (the chase), these database classes are recursively enumerable. We show that, conversely, every homomorphism-closed recursively enumerable query can be expressed as an existential rule query, thus arriving at a precise characterization of existential rules by model-theoretic and computational properties. Although the result is very intuitive, the proof turns out to be non-trivial. This result can be seen as a very expressive counterpart of the prominent Lyndon-Los-Tarski-Theorem characterizing the homomorphism-closed fragment of first-order logic. Notably, our result does not presume the existence of any additional built-in structure on the queried data, such as a linear order on the domain, which is a typical requirement for other characterizations in the spirit of descriptive complexity.
【Keywords】:
【Paper Link】 【Pages】:3200-3206
【Authors】: Sebastian Sardiña ; Nicolás D'Ippolito
【Abstract】: Whereas previous work on non-deterministic planning has focused on characterizing (and computing) "loopy" but "closed" plans, we look here at the kind of environments that these plans are to be executed in. In particular, we provide a logical characterization of the standard "fairness'' assumption used, and show that strong cyclic plans are correct solution concepts for fair environments. We argue then that such logical characterization allows us to recast non-deterministic planning as a reactive synthesis task, and show that for a special case, recent efficient synthesis techniques can be applied.
【Keywords】:
【Paper Link】 【Pages】:3207-3213
【Authors】: Steven Schockaert ; Jae Hee Lee
【Abstract】: We introduce a framework for qualitative reasoning about directions in high-dimensional spaces, called EER, where our main motivation is to develop a form of commonsense reasoning about semantic spaces. The proposed framework is, however, more general; we show how qualitative spatial reasoning about points with several existing calculi can be reduced to the realisability problem for EER (or REER for short), including LR and calculi for reasoning about betweenness, collinearity and parallelism. Finally, we propose an efficient but incomplete inference method, and show its effectiveness for reasoning with EER as well as reasoning with some of the aforementioned calculi.
【Keywords】:
【Paper Link】 【Pages】:3214-3220
【Authors】: Christoph Schwering ; Gerhard Lakemeyer ; Maurice Pagnucco
【Abstract】: Fundamental to reasoning about actions and beliefs is the projection problem: to decide what is believed after a sequence of actions is performed. Progression is one widely applied technique to solve this problem. In this paper we propose a novel framework for computing progression in the epistemic situation calculus. In particular, we model an agent's preferential belief structure using conditional statements and provide a technique for updating these conditional statements as actions are performed and sensing information is received. Moreover, we show, by using the concepts of natural revision and only-believing, that the progression of a conditional knowledge base can be represented by only-believing the revised set of conditional statements. These results lay the foundations for feasible belief progression due to the unique-model property of only-believing.
【Keywords】:
【Paper Link】 【Pages】:3221-3228
【Authors】: Kostyantyn M. Shchekotykhin ; Dietmar Jannach ; Thomas Schmitz
【Abstract】: The computation of minimal conflict sets is a central task when the goal is to find relaxations or explanations for overconstrained problem formulations and in particular in the context of Model-Based Diagnosis (MBD) approaches. In this paper we propose MergeXPlain, a non-intrusive conflict detection algorithm which implements a divide-and-conquer strategy to decompose a problem into a set of smaller independent subproblems. Our technique allows us to efficiently determine multiple minimal conflicts during one single problem decomposition run, which is particularly helpful in MBD problem settings. An empirical evaluation on various benchmark problems shows that our method can lead to a significant reduction of the required diagnosis times.
【Keywords】:
【Paper Link】 【Pages】:3229-3235
【Authors】: Michael Sioutis ; Sanjiang Li ; Jean-François Condotta
【Abstract】: RCC8 is a constraint language that serves for qualitative spatial representation and reasoning by encoding the topological relations between spatial entities. We focus on efficiently characterizing non-redundant constraints in large real world RCC8 networks and obtaining their prime networks. For a RCC8 network N a constraint is redundant, if removing that constraint from N does not change the solution set of N. A prime network of N is a network which contains no redundant constraints, but has the same solution set as N. We make use of a particular partial consistency, namely, G-path consistency, and obtain new complexity results for various cases of RCC8 networks, while we also show that given a maximal distributive subclass for RCC8 and a network N defined on that subclass, the prunning capacity of G-path consistency and path consistency is identical on the common edges of G and the complete graph of N, when G is a triangulation of the constraint graph of N. Finally, we devise an algorithm based on G-path consistency to compute the unique prime network of a RCC8 network, and show that it significantly progresses the state-of-the-art for practical reasoning with real RCC8 networks scaling up to millions of nodes.
【Keywords】:
【Paper Link】 【Pages】:3236-3242
【Authors】: György Turán ; Jon Yaggie
【Abstract】: A formal framework is given for the postulate characterizability of a class of belief revision operators, obtained from a class of partial preorders using minimization. It is shown that for classes of posets characterizability is equivalent to a special kind of definability in monadic second-order logic, which turns out to be incomparable to first-order definability. Several examples are given of characterizable and non-characterizable classes. For example, it is shown that the class of revision operators obtained from posets which are not total is not characterizable.
【Keywords】:
【Paper Link】 【Pages】:3243-3249
【Authors】: Benito van der Zander ; Johannes Textor ; Maciej Liskiewicz
【Abstract】: Instrumental variables (IVs) are widely used to identify causal effects. For this purpose IVs have to be exogenous, i.e., causally unrelated to all variables in the model except the explanatory variable X. It can be hard to find such variables. A generalized IV method has been proposed that only requires exogeneity conditional on a set of covariates. This leads to a wider choice of potential IVs, but is rarely used yet. Here we address two issues with conditional IVs. First, they are conceptually rather distant to standard IVs; even variables that are independent of X could qualify as conditional IVs. We propose a new concept called ancestral IV, which interpolates between the two existing notions. Second, so far only exponential-time algorithms are known to find conditional IVs in a given causal diagram. Indeed, we prove that this problem is NP-hard. Nevertheless, we show that whenever a conditional IV exists, so does an ancestral IV, and ancestral IVs can be found in polynomial time. Together this implies a complete and constructive solution to causal effect identification using IVs in linear causal models.
【Keywords】:
【Paper Link】 【Pages】:3250-3256
【Authors】: Marc van Zee ; Dragan Doder ; Mehdi Dastani ; Leendert W. N. van der Torre
【Abstract】: The AGM theory of belief revision is based on propositional belief sets. In this paper we develop a logic for revision of temporal belief bases, containing expressions about temporal propositions (tomorrow it will rain), possibility (it may rain tomorrow), actions (the robot enters the room) and pre- and post-conditions of these actions. We prove the Katsuno-Mendelzon and the Darwiche-Pearl representation theorems by restricting the logic to formulas representing beliefs up to certain time. We illustrate our belief change model through several examples.
【Keywords】:
【Paper Link】 【Pages】:3257-3263
【Authors】: Hai Wan ; Rui Yang ; Liangda Fang ; Yongmei Liu ; Huada Xu
【Abstract】: Planning with epistemic goals has received attention from both the dynamic logic and planning communities. In the single-agent case, under the epistemic closed-world assumption (ECWA), epistemic planning can be reduced to contingent planning. However, it is inappropriate to make the ECWA in some epistemic planning scenarios, for example, when the agent is not fully introspective, or when the agent wants to devise a generic plan that applies to a wide range of situations. In this paper, we propose a complete single-agent epistemic planner without the ECWA. We identify two normal forms of epistemic formulas: weak minimal epistemic DNF and weak minimal epistemic CNF, and present the progression and entailment algorithms based on these normal forms. We adapt the PrAO algorithm for contingent planning from the literature as the main planning algorithm and develop a complete epistemic planner called EPK. Our experimental results show that EPK can generate solutions effectively for most of the epistemic planning problems we have considered including those without the ECWA.
【Keywords】:
【Paper Link】 【Pages】:3264-3270
【Authors】: Zhongyuan Wang ; Kejun Zhao ; Haixun Wang ; Xiaofeng Meng ; Ji-Rong Wen
【Abstract】: The goal of query conceptualization is to map instances in a query to concepts defined in a certain ontology or knowledge base. Queries usually do not observe the syntax of a written language, nor do they contain enough signals for statistical inference. However, the available context, i.e., the verbs related to the instances, the adjectives and attributes of the instances, do provide valuable clues to understand instances. In this paper, we first mine a variety of relations among terms from a large web corpus and map them to related concepts using a probabilistic knowledge base. Then, for a given query, we conceptualize terms in the query using a random walk based iterative algorithm. Finally, we examine our method on real data and compare it to representative previous methods. The experimental results show that our method achieves higher accuracy and efficiency in query conceptualization.
【Keywords】:
【Paper Link】 【Pages】:3271-3277
【Authors】: Nic Wilson ; Anne-Marie George ; Barry O'Sullivan
【Abstract】: Preference Inference involves inferring additional user preferences from elicited or observed preferences, based on assumptions regarding the form of the user's preference relation. In this paper we consider a situation in which alternatives have an associated vector of costs, each component corresponding to a different criterion, and are compared using a kind of lexicographic order, similar to the way alternatives are compared in a Hierarchical Constraint Logic Programming model. It is assumed that the user has some (unknown) importance ordering on criteria, and that to compare two alternatives, firstly, the combined cost of each alternative with respect to the most important criteria are compared; only if these combined costs are equal, are the next most important criteria considered. The preference inference problem then consists of determining whether a preference statement can be inferred from a set of input preferences. We show that this problem is co-NP-complete, even if one restricts the cardinality of the equal-importance sets to have at most two elements, and one only considers non-strict preferences. However, it is polynomial if it is assumed that the user's ordering of criteria is a total ordering; it is also polynomial if the sets of equally important criteria are all equivalence classes of a given fixed equivalence relation. We give an efficient polynomial algorithm for these cases, which also throws light on the structure of the inference.
【Keywords】:
【Paper Link】 【Pages】:3278-3284
【Authors】: Benjamin Zarrieß ; Jens Claßen
【Abstract】: A knowledge-based program defines the behavior of an agent by combining primitive actions, programming constructs and test conditions that make explicit reference to the agent's knowledge. In this paper we consider a setting where an agent is equipped with a Description Logic (DL) knowledge base providing general domain knowledge and an incomplete description of the initial situation. We introduce a corresponding new DL-based action language that allows for representing both physical and sensing actions, and that we then use to build knowledge-based programs with test conditions expressed in the epistemic DL. After proving undecidability for the general case, we then discuss a restricted fragment where verification becomes decidable. The provided proof is constructive and comes with an upper bound on the procedure's complexity.
【Keywords】:
【Paper Link】 【Pages】:3285-3291
【Authors】: Haodi Zhang ; Fangzhen Lin
【Abstract】: We consider a simple language for writing causal action theories, and postulate several properties for the state transition models of these theories. We then consider some possible embeddings of these causal action theories in some other action formalisms, and their implementations in logic programs with answer set semantics. In particular, we propose to consider what we call permissible translations from these causal action theories to logic programs. We identify two sets of properties, and prove that for each set, there is only one permissible translation, under strong equivalence, that can satisfy all properties in the set. As it turns out, for one set, the unique permissible translation is essentially the same as Balduccini and Gelfond's translation from Gelfond and Lifschitz's action language B to logic programs. For the other, it is essentially the same as Lifschitz and Turner's translation from the action language C to logic programs. This work provides a new perspective on understanding, evaluating and comparing action languages by using sets of properties instead of examples. It will be interesting to see if other action languages can be similarly characterized, and whether new action formalisms can be defined using different sets of properties.
【Keywords】:
【Paper Link】 【Pages】:3292-3298
【Authors】: Yi Zhou
【Abstract】: In this paper, we study the expressive power of first-order disjunctive logic programming (DLP) and normal logic programming (NLP) under the stable model semantics. We show that, unlike the propositional case, first-order DLP is strictly more expressive than NLP. This result still holds even if auxiliary predicates are allowed, assuming that NP not equals to coNP. On the other side, we propose a partial translation from first-order DLP to NLP via unfolding and shifting, which suggests a sound yet incomplete approach to implement DLP via NLP solvers. We also identify some NLP definable subclasses, and conjecture to exactly capture NLP definability by unfolding and shifting.
【Keywords】:
【Paper Link】 【Pages】:3299-3307
【Authors】: Zhiqiang Zhuang ; Zhe Wang ; Kewen Wang ; James P. Delgrande
【Abstract】: Classic entrenchment-based contraction is not applicable to many useful logics, such as description logics. This is because the semantic construction refers to arbitrary disjunctions of formulas, while many logics do not fully support disjunction. In this paper, we present a new entrenchment-based contraction which does not rely on any logical connectives except conjunction. This contraction is applicable to all fragments of first-order logic that support conjunction. We provide a representation theorem for the contraction which shows that it satisfies all the AGM postulates except for the controversial Recovery Postulate, and is a natural generalisation of entrenchment-based contraction.
【Keywords】:
【Paper Link】 【Pages】:3308-3314
【Authors】: Dana Angluin ; Sarah Eisenstat ; Dana Fisman
【Abstract】: Nearly all algorithms for learning an unknown regular language, in particular the popular L algorithm, yield deterministic finite automata. It was recently shown that the ideas of L can be extended to yield non-deterministic automata, and that the respective learning algorithm, NL, outperforms L on randomly generated regular expressions. We conjectured that this is due to the existential nature of regular expressions, and NL might not outperform L on languages with a universal nature. In this paper we introduce UL — a learning algorithm for universal automata (the dual of non-deterministic automata); and AL — a learning algorithm for alternating automata (which generalize both universal and non-deterministic automata). Our empirical results illustrate the advantages and trade-offs among L, NL, UL and AL.
【Keywords】:
【Paper Link】 【Pages】:3315-3321
【Authors】: Julien Audiffren ; Michal Valko ; Alessandro Lazaric ; Mohammad Ghavamzadeh
【Abstract】: A popular approach to apprenticeship learning (AL) is to formulate it as an inverse reinforcement learning (IRL) problem. The MaxEnt-IRL algorithm successfully integrates the maximum entropy principle into IRL and unlike its predecessors, it resolves the ambiguity arising from the fact that a possibly large number of policies could match the expert's behavior. In this paper, we study an AL setting in which in addition to the expert's trajectories,a number of unsupervised trajectories is available. We introduce MESSI,a novel algorithm that combines MaxEnt-IRL with principles coming from semisupervised learning. In particular, MESSI integrates the unsupervised data into the MaxEnt-IRL framework using a pairwise penalty on trajectories. Empirical results in a highway driving and grid-world problems indicate that MESSI is able to take advantage of the unsupervised trajectories and improve the performance of MaxEnt-IRL.
【Keywords】:
【Paper Link】 【Pages】:3322-3328
【Authors】: Lu Bai ; Zhihong Zhang ; Chaoyan Wang ; Xiao Bai ; Edwin R. Hancock
【Abstract】: In this paper, we develop a novel graph kernel by aligning the Jensen-Shannon (JS) representations of vertices. We commence by describing how to compute the JS representation of a vertex by measuring the JS divergence (JSD) between the corresponding $-layer depth-based (DB) representations developed. By aligning JS representations of vertices, we identify the correspondence between the vertices of two graphs and this allows us to construct a matching-based graph kernel. Unlike existing R-convolution kernels that roughly record the isomorphism information between any pair of substructures under a type of graph decomposition, the new kernel can be seen as an aligned subgraph kernel that incorporates explicit local correspondences of substructures i.e., the local information graphs) into the process of kernelization through the JS representation alignment. The new kernel thus addresses the drawback of neglecting the relative locations between substructures that arises in the R-convolution kernels. Experiments demonstrate that our kernel can easily outperform state-of-the-art graph kernels in terms of the classification accuracies.
【Keywords】:
【Paper Link】 【Pages】:3329-3336
【Authors】: André da Motta Salles Barreto ; Rafael L. Beirigo ; Joelle Pineau ; Doina Precup
【Abstract】: When a transition probability matrix is represented as the product of two stochastic matrices, swapping the factors of the multiplication yields another transition matrix that retains some fundamental characteristics of the original. Since the new matrix can be much smaller than its precursor, replacing the former for the latter can lead to significant savings in terms of computational effort. This strategy, dubbed the "stochastic-factorization trick," can be used to compute the stationary distribution of a Markov chain, to determine the fundamental matrix of an absorbing chain, and to compute a decision policy via dynamic programming or reinforcement learning. In this paper we show that the stochastic-factorization trick can also provide benefits in terms of the number of samples needed to estimate a transition matrix. We introduce a probabilistic interpretation of a stochastic factorization and build on the resulting model to develop an algorithm to compute the factorization directly from data. If the transition matrix can be well approximated by a low-order stochastic factorization, estimating its factors instead of the original matrix reduces significantly the number of parameters to be estimated. Thus, when compared to estimating the transition matrix directly via maximum likelihood, the proposed method is able to compute approximations of roughly the same quality using less data. We illustrate the effectiveness of the proposed algorithm by using it to help a reinforcement learning agent learn how to play the game of blackjack.
【Keywords】:
【Paper Link】 【Pages】:3337-3344
【Authors】: Marc G. Bellemare
【Abstract】: Count-based estimators are a fundamental building block of a number of powerful sequential prediction algorithms, including Context Tree Weighting and Prediction by Partial Matching. Keeping exact counts, however, typically results in a high memory overhead. In particular, when dealing with large alphabets the memory requirements of count-based estimators often become prohibitive. In this paper we propose three novel ideas for approximating count-based estimators using bounded memory. Our first contribution, of independent interest, is an extension of reservoir sampling for sampling distinct symbols from a stream of unknown length, which we call K-distinct reservoir sampling. We combine this sampling scheme with a state-of-the-art count-based estimator for memoryless sources, the Sparse Adaptive Dirichlet (SAD) estimator. The resulting algorithm, the Budget SAD, naturally guarantees a limit on its memory usage. We finally demonstrate the broader use of K-distinct reservoir sampling in nonparametric estimation by using it to restrict the branching factor of the Context Tree Weighting algorithm. We demonstrate the usefulness of our algorithms with empirical results on two sequential, large-alphabet prediction problems.
【Keywords】:
【Paper Link】 【Pages】:3345-3351
【Authors】: Haitham Bou-Ammar ; Eric Eaton ; José-Marcio Luna ; Paul Ruvolo
【Abstract】: Online multi-task learning is an important capability for lifelong learning agents, enabling them to acquire models for diverse tasks over time and rapidly learn new tasks by building upon prior experience. However, recent progress toward lifelong reinforcement learning (RL) has been limited to learning from within a single task domain. For truly versatile lifelong learning, the agent must be able to autonomously transfer knowledge between different task domains. A few methods for cross-domain transfer have been developed, but these methods are computationally inefficient for scenarios where the agent must learn tasks consecutively. In this paper, we develop the first cross-domain lifelong RL framework. Our approach efficiently optimizes a shared repository of transferable knowledge and learns projection matrices that specialize that knowledge to different task domains. We provide rigorous theoretical guarantees on the stability of this approach, and empirically evaluate its performance on diverse dynamical systems. Our results show that the proposed method can learn effectively from interleaved task domains and rapidly acquire high performance in new domains.
【Keywords】:
【Paper Link】 【Pages】:3352-3358
【Authors】: Tim Brys ; Anna Harutyunyan ; Halit Bener Suay ; Sonia Chernova ; Matthew E. Taylor ; Ann Nowé
【Abstract】: Reinforcement learning describes how a learning agent can achieve optimal behaviour based on interactions with its environment and reward feedback. A limiting factor in reinforcement learning as employed in artificial intelligence is the need for an often prohibitively large number of environment samples before the agent reaches a desirable level of performance. Learning from demonstration is an approach that provides the agent with demonstrations by a supposed expert, from which it should derive suitable behaviour. Yet, one of the challenges of learning from demonstration is that no guarantees can be provided for the quality of the demonstrations, and thus the learned behavior. In this paper, we investigate the intersection of these two approaches, leveraging the theoretical guarantees provided by reinforcement learning, and using expert demonstrations to speed up this learning by biasing exploration through a process called reward shaping. This approach allows us to leverage human input without making an erroneous assumption regarding demonstration optimality. We show experimentally that this approach requires significantly fewer demonstrations, is more robust against suboptimality of demonstrations, and achieves much faster learning than the recently developed HAT algorithm.
【Keywords】:
【Paper Link】 【Pages】:3359-3365
【Authors】: Deng Cai
【Abstract】: Spectral dimensionality reduction methods have recently emerged as powerful tools for various applications in pattern recognition, data mining and computer vision. These methods use information contained in the eigenvectors of a data affinity (i.e, item-item similarity) matrix to reveal the low dimensional structure of the high dimensional data. One of the limitations of various spectral dimensionality reduction methods is their high computational complexity. They all need to construct a data affinity matrix and compute the top eigenvectors. This leads to O(n2) computational complexity, where n is the number of samples. Moreover, when the data are highly non-linear distributed, some linear methods have to be performed in a reproducing kernel Hilbert space (leads to the corresponding kernel methods) to learn an effective non-linear mapping. The computational complexity of these kernel methods is O(n3). In this paper, we propose a novel nonlinear dimensionality reduction algorithm, called Compressed Spectral Regression, with O(n) computational complexity. Extensive experiments on data clustering demonstrate the effectiveness and efficiency of the proposed approach.
【Keywords】:
【Paper Link】 【Pages】:3366-3372
【Authors】: Thomas Cederborg ; Ishaan Grover ; Charles L. Isbell ; Andrea Lockerd Thomaz
【Abstract】: In this work we evaluate the performance of a policy shaping algorithm using 26 human teachers. We examine if the algorithm is suitable for human-generated data on two different boards in a pac-man domain, comparing performance to an oracle that provides critique based on one known winning policy. Perhaps surprisingly, we show that the data generated by our 26 participants yields even better performance for the agent than data generated by the oracle. This might be because humans do not discourage exploring multiple winning policies. Additionally, we evaluate the impact of different verbal instructions, and different interpretations of silence, finding that the usefulness of data is affected both by what instructions is given to teachers, and how the data is interpreted.
【Keywords】:
【Paper Link】 【Pages】:3373-3379
【Authors】: Shiyu Chang ; Jiayu Zhou ; Pirooz Chubak ; Junling Hu ; Thomas S. Huang
【Abstract】: In recent years, recommendation algorithms have become one of the most active research areas driven by the enormous industrial demands. Most of the existing recommender systems focus on topics such as movie, music, e-commerce etc., which essentially differ from the TV show recommendations due to the cold-start and temporal dynamics. Both effectiveness (effectively handling the cold-start TV shows) and efficiency (efficiently updating the model to reflect the temporal data changes) concerns have to be addressed to design real-world TV show recommendation algorithms. In this paper, we introduce a novel hybrid recommendation algorithm incorporating both collaborative user-item relationship as well as item content features. The cold-start TV shows can be correctly recommended to desired users via a so called space alignment technique. On the other hand, an online updating scheme is developed to utilize new user watching behaviors. We present experimental results on a real TV watch behavior data set to demonstrate the significant performance improvement over other state-of-the-art algorithms.
【Keywords】:
【Paper Link】 【Pages】:3380-3386
【Authors】: Jessica Chemali ; Alessandro Lazaric
【Abstract】: We consider the problem of learning the optimal policy of an unknown Markov decision process (MDP) when expert demonstrations are available along with interaction samples. We build on classification-based policy iteration to perform a seamless integration of interaction and expert data, thus obtaining an algorithm which can benefit from both sources of information at the same time. Furthermore, we provide a full theoretical analysis of the performance across iterations providing insights on how the algorithm works. Finally, we report an empirical evaluation of the algorithm and a comparison with the state-of-the-art algorithms.
【Keywords】:
【Paper Link】 【Pages】:3387-3394
【Authors】: Huanhuan Chen ; Fengzhen Tang ; Peter Tiño ; Anthony G. Cohn ; Xin Yao
【Abstract】: We present a novel model-metric co-learning (MMCL) methodology for sequence classification which learns in the model space — each data item (sequence) is represented by a predictive model from a carefully designed model class. MMCL learning encourages sequences from the same class to be represented by ‘close’ model representations, well separated from those for different classes. Existing approaches to the problem either fit a single model to all the data, or a (predominantly linear) model on each sequence. We introduce a novel hybrid approach spanning the two extremes. The model class we use is a special form of adaptive high-dimensional non-linear state space model with a highly constrained and simple dynamic part. The dynamic part is identical for all data items and acts as a temporal filter providing a rich pool of dynamic features that can be selectively extracted by individual (static) linear readout mappings representing the sequences. Alongside learning the dynamic part, we also learn the global metric in the model readout space. Experiments on synthetic and benchmark data sets confirm the effectiveness of the algorithm compared to a variety of alternative methods.
【Keywords】:
【Paper Link】 【Pages】:3395-3401
【Authors】: Xixian Chen ; Haiqin Yang ; Irwin King ; Michael R. Lyu
【Abstract】: Random feature map is popularly used to scale up kernel methods. However, employing a large number of mapped features to ensure an accurate approximation will still make the training time consuming. In this paper, we aim to improve the training efficiency of shift-invariant kernels by using fewer informative features without sacrificing precision. We propose a novel feature map method by extending Random Kitchen Sinks through fast data-dependent subspace embedding to generate the desired features. More specifically, we describe two algorithms with different tradeoffs on the running speed and accuracy, and prove that O(l) features induced by them are able to perform as accurately as O(l2) features by other feature map methods. In addition, several experiments are conducted on the real-world datasets demonstrating the superiority of our proposed algorithms.
【Keywords】:
【Paper Link】 【Pages】:3402-3408
【Authors】: Ying-Cong Chen ; Wei-Shi Zheng ; Jianhuang Lai
【Abstract】: Person re-identification concerns the matching of pedestrians across disjoint camera views. Due to the changes of viewpoints, lighting conditions and camera features, images of the same person from different views always appear differently, and thus feature representations across disjoint camera views of the same person follow different distributions. In this work, we propose an effective, low cost and easy-to-apply schema called the Mirror Representation, which embeds the view-specific feature transformation and enables alignment of the feature distributions across disjoint views for the same person. The proposed Mirror Representation is also designed to explicitly model the relation between different view-specific transformations and meanwhile control their discrepancy. With our Mirror Representation, we can enhance existing subspace/metric learning models significantly, and we particularly show that kernel marginal fisher analysis significantly outperforms the current state-of-the-art methods through extensive experiments on VIPeR, PRID450S and CUHK01.
【Keywords】:
【Paper Link】 【Pages】:3409-3415
【Authors】: Yiu-ming Cheung ; Jian Lou
【Abstract】: Generalized conditional gradient method has regained increasing research interest as an alternative to another popular proximal gradient method for sparse optimization problems. For particular tasks, its low computation cost of linear subproblem evaluation on each iteration leads to superior practical performance. However, the inferior iteration complexity incurs excess number of gradient evaluations, which can counteract the efficiency gained by solving low cost linear subproblem. In this paper, we therefore propose a novel algorithm that requires optimal graduate evaluations as proximal gradient. We also present a refined variant for a type of gauge regularized problem where approximation techniques are allowed to further accelerate linear subproblem computation. Experiments of CUR-like matrix factorization problem with group lasso penalty on four real-world datasets demonstrate the efficiency of the proposed method.
【Keywords】:
【Paper Link】 【Pages】:3416-3422
【Authors】: Jacob W. Crandall
【Abstract】: In repeated stochastic games (RSGs), an agent must quickly adapt to the behavior of previously unknown associates, who may themselves be learning. This machine-learning problem is particularly challenging due, in part, to the presence of multiple (even infinite) equilibria and inherently large strategy spaces. In this paper, we introduce a method to reduce the strategy space of two-player general-sum RSGs to a handful of expert strategies. This process, called mega, effectually reduces an RSG to a bandit problem. We show that the resulting strategy space preserves several important properties of the original RSG, thus enabling a learner to produce robust strategies within a reasonably small number of interactions. To better establish strengths and weaknesses of this approach, we empirically evaluate the resulting learning system against other algorithms in three different RSGs.
【Keywords】:
【Paper Link】 【Pages】:3423-3429
【Authors】: Andrew Cropper ; Stephen H. Muggleton
【Abstract】: Most logic-based machine learning algorithms rely on an Occamist bias where textual complexity of hypotheses is minimised. Within Inductive Logic Programming (ILP), this approach fails to distinguish between the efficiencies of hypothesised programs, such as quick sort (O(n log n)) and bubble sort (O(n2)). This paper addresses this issue by considering techniques to minimise both the textual complexity and resource complexity of hypothesised robot strategies. We develop a general framework for the problem of minimising resource complexity and show that on two robot strategy problems, 1) Postman 2) Sorter (recursively sort letters for delivery), the theoretical resource complexities of optimal strategies vary depending on whether objects can be composed within a strategy. The approach considered is an extension of Meta-Interpretive Learning (MIL), a recently developed paradigm in ILP which supports predicate invention and the learning of recursive logic programs. We introduce a new MIL implementation, MetagolO, and prove its convergence, with increasing numbers of randomly chosen examples to optimal strategies of this kind. Our experiments show that MetagolO learns theoretically optimal robot sorting strategies, which is in agreement with the theoretical predictions showing a clear divergence in resource requirements as the number of objects grows. To the authors’ knowledge this paper is the first demonstration of a learning algorithm able to learn optimal resource complexity robot strategies and algorithms for sorting lists.
【Keywords】:
【Paper Link】 【Pages】:3430-3437
【Authors】: Qi Dai ; Jianguo Li ; Jun Wang ; Yurong Chen ; Yu-Gang Jiang
【Abstract】: In practical applications, it is often observed that high-dimensional features can yield good performance, while being more costly in both computation and storage. In this paper, we propose a novel method called Bayesian Hashing to learn an optimal Hamming embedding of high-dimensional features, with a focus on the challenging application of face recognition. In particular, a boosted random FERNs classification model is designed to perform efficient face recognition, in which bit correlations are elaborately approximated with a random permutation technique. Without incurring additional storage cost, multiple random permutations are then employed to train a series of classifiers for achieving better discrimination power. In addition, we introduce a sequential forward floating search (SFFS) algorithm to perform model selection, resulting in further performance improvement. Extensive experimental evaluations and comparative studies clearly demonstrate that the proposed Bayesian Hashing approach outperforms other peer methods in both accuracy and speed. We achieve state-of-the-art results on well-known face recognition benchmarks using compact binary codes with significantly reduced computational overload and storage cost.
【Keywords】:
【Paper Link】 【Pages】:3438-3444
【Authors】: Cheng Deng ; Zongting Lv ; Wei Liu ; Junzhou Huang ; Dacheng Tao ; Xinbo Gao
【Abstract】: Recent studies have demonstrated the advantages of fusing information from multiple views for various machine learning applications. However, most existing approaches assumed the shared component common to all views and ignored the private components of individual views, which thereby restricts the learning performance. In this paper, we propose a new multi-view, low-rank, and sparse matrix decomposition scheme to seamlessly integrate diverse yet complementary information stemming from multiple views. Unlike previous approaches, our approach decomposes an input data matrix concatenated from multiple views as the sum of low-rank, sparse, and noisy parts. Then a unified optimization framework is established, where the low-rankness and group-structured sparsity constraints are imposed to simultaneously capture the shared and private components in both instance and view levels. A proven optimization algorithm is developed to solve the optimization, yielding the learned augmented representation which is used as features for classification tasks. Extensive experiments conducted on six benchmark image datasets show that our approach enjoys superior performance over the state-of-the-art approaches.
【Keywords】:
【Paper Link】 【Pages】:3445-3452
【Authors】: Shay Deutsch ; Gérard G. Medioni
【Abstract】: Solving multi-manifolds clustering problems that include delineating and resolving multiple intersections is a very challenging problem. In this paper we propose a novel procedure for clustering intersecting multi-manifolds and delineating junctions in high dimensional spaces. We propose to explicitly and directly resolve ambiguities near the intersections by using 2 properties: One is the position of the data points in the vicinity of the detected intersection; the other is the reliable estimation of the tangent spaces away from the intersections. We experiment with our method on a wide range of geometrically complex settings of convoluted intersecting manifolds, on which we demon- strate higher clustering performance than the state of the art. This includes tackling challenging geometric structures such as when the tangent spaces at the intersections points are not orthogonal.
【Keywords】:
【Paper Link】 【Pages】:3453-3459
【Authors】: Zhengming Ding ; Ming Shao ; Yun Fu
【Abstract】: Recent researches on transfer learning exploit deep structures for discriminative feature representation to tackle cross-domain disparity. However, few of them are able to joint feature learning and knowledge transfer in a unified deep framework. In this paper, we develop a novel approach, called Deep Low-Rank Coding (DLRC), for transfer learning. Specifically, discriminative low-rank coding is achieved in the guidance of an iterative supervised structure term for each single layer. In this way, both marginal and conditional distributions between two domains intend to be mitigated. In addition, a marginalized denoising feature transformation is employed to guarantee the learned single-layer low-rank coding to be robust despite of corruptions or noises. Finally, by stacking multiple layers of low-rank codings, we manage to learn robust cross-domain features from coarse to fine. Experimental results on several benchmarks have demonstrated the effectiveness of our proposed algorithm on facilitating the recognition performance for the target domain.
【Keywords】:
【Paper Link】 【Pages】:3460-3468
【Authors】: Tobias Domhan ; Jost Tobias Springenberg ; Frank Hutter
【Abstract】: Deep neural networks (DNNs) show very strong performance on many machine learning problems, but they are very sensitive to the setting of their hyperparameters. Automated hyperparameter optimization methods have recently been shown to yield settings competitive with those found by human experts, but their widespread adoption is hampered by the fact that they require more computational resources than human experts. Humans have one advantage: when they evaluate a poor hyperparameter setting they can quickly detect (after a few SGD steps) that the resulting network performs poorly and terminate the corresponding evaluation to save time. Here, we mimic this early termination of bad runs based on a probabilistic model that extrapolates performance from the first part of a learning curve. Experiments with different neural network architectures show that our resulting approach speeds up state-of-the-art hyperparameter optimization methods for DNNs roughly twofold, enabling them to find DNN settings that yield better performance than those chosen by human experts.
【Keywords】:
【Paper Link】 【Pages】:3469-3475
【Authors】: Jianguang Du ; Jing Jiang ; Dandan Song ; Lejian Liao
【Abstract】: Topic modeling has been widely used in text mining. Previous topic models such as Latent Dirichlet Allocation (LDA) are successful in learning hidden topics but they do not take into account metadata of documents. To tackle this problem, many augmented topic models have been proposed to jointly model text and metadata. But most existing models handle only categorical and numerical types of metadata. We identify another type of metadata that can be more natural to obtain in some scenarios. These are relative similarities among documents. In this paper, we propose a general model that links LDA with constraints derived from document relative similarities. Specifically, in our model, the constraints act as a regularizer of the log likelihood of LDA. We fit the proposed model using Gibbs-EM. Experiments with two real world datasets show that our model is able to learn meaningful topics. The results also show that our model outperforms the baselines in terms of topic coherence and a document classification task.
【Keywords】:
【Paper Link】 【Pages】:3476-3482
【Authors】: Liang Du ; Peng Zhou ; Lei Shi ; Hanmo Wang ; Mingyu Fan ; Wenjian Wang ; Yi-Dong Shen
【Abstract】: The k-means algorithm is one of the most often used method for data clustering. However, the standard k-means can only be applied in the original feature space. The kernel k-means, which extends k-means into the kernel space, can be used to capture the non-linear structure and identify arbitrarily shaped clusters. Since both the standard k-means and kernel k-means apply the squared error to measure the distances between data points and cluster centers, a few outliers will cause large errors and dominate the objection function. Besides, the performance of kernel method is largely determined by the choice of kernel. Unfortunately, the most suitable kernel for a particular task is often unknown in advance. In this paper, we first present a robust k-means using l2,1-norm in the feature space and then extend it to the kernel space. To recap the powerfulness of kernel methods, we further propose a novel robust multiple kernel k-means (RMKKM) algorithm that simultaneously finds the best clustering label, the cluster membership and the optimal combination of multiple kernels. An alternating iterative schema is developed to find the optimal value. Extensive experiments well demonstrate the effectiveness of the proposed algorithms.
【Keywords】:
【Paper Link】 【Pages】:3483-3489
【Authors】: Lei Duan ; Satoshi Oyama ; Masahito Kurihara ; Haruhiko Sato
【Abstract】: Most multi-label domains lack an authoritative taxonomy. Therefore, different taxonomies are commonly used in the same domain, which results in complications. Although this situation occurs frequently, there has been little study of it using a principled statistical approach. Given that (1) different taxonomies used in the same domain are generally founded on the same latent semantic space, where each possible label set in a taxonomy denotes a single semantic concept, and that (2) crowdsourcing is beneficial in identifying relationships between semantic concepts and instances at low cost, we proposed a novel probabilistic cascaded method for establishing a semantic matching function in a crowdsourcing setting that maps label sets in one (source) taxonomy to label sets in another (target) taxonomy in terms of the semantic distances between them. The established function can be used to detect the associated label set in the target taxonomy for an instance directly from its associated label set in the source taxonomy without any extra effort. Experimental results on real-world data (emotion annotations for narrative sentences) demonstrated that the proposed method can robustly establish semantic matching functions exhibiting satisfactory performance from a limited number of crowdsourced annotations.
【Keywords】:
【Paper Link】 【Pages】:3490-3496
【Authors】: Chang Feng ; Qinghua Hu ; Shizhong Liao
【Abstract】: Random feature mappings have been successfully used for approximating non-linear kernels to scaleup kernel methods. Some work aims at speeding up the feature mappings, but brings increasing variance of the approximation. In this paper, we propose a novel random feature mapping method that uses a signed Circulant Random Matrix (CRM) instead of an unstructured random matrix to project input data. The signed CRM has linear space complexity as the whole signed CRM can be recovered from one column of the CRM, and ensures loglin-ear time complexity to compute the feature mapping using the Fast Fourier Transform (FFT). Theoretically, we prove that approximating Gaussian kernel using our mapping method is unbiased and does not increase the variance. Experimentally, we demonstrate that our proposed mapping method is time and space efficient while retaining similar accuracies with state-of-the-art random feature mapping methods. Our proposed random feature mapping method can be implemented easily and make kernel methods scalable and practical for large scale training and predicting problems.
【Keywords】:
【Paper Link】 【Pages】:3497-3503
【Authors】: Yasuhiro Fujiwara ; Dennis Shasha
【Abstract】: Belief propagation over Markov random fields has been successfully used in many AI applications since it yields accurate inference results by iteratively updating messages between nodes. However, its high computation costs are a barrier to practical use. This paper presents an efficient approach to belief propagation. Our approach, Quiet, dynamically detects converged messages to skip unnecessary updates in each iteration while it theoretically guarantees to output the same results as the standard approach used to implement belief propagation. Experiments show that our approach is significantly faster than existing approaches without sacrificing inference quality.
【Keywords】:
【Paper Link】 【Pages】:3504-3510
【Authors】: Yang Gao ; Francesca Toni
【Abstract】: Hierarchical Reinforcement Learning (HRL) outperforms many ‘flat’ Reinforcement Learning (RL) algorithms in some application domains. However, HRL may need longer time to obtain the optimal policy because of its large action space. Potential Based Reward Shaping (PBRS) has been widely used to incorporate heuristics into flat RL algorithms so as to reduce their exploration. In this paper, we investigate the integration of PBRS and HRL, and propose a new algorithm: PBRS-MAXQ-0. We prove that under certain conditions, PBRS-MAXQ-0 is guaranteed to converge. Empirical results show that PBRS-MAXQ-0 significantly outperforms MAXQ-0 given good heuristics, and can converge even when given misleading heuristics.
【Keywords】:
【Paper Link】 【Pages】:3511-3517
【Authors】: Xin Geng ; Peng Hou
【Abstract】: This paper studies an interesting problem: is it possible to predict the crowd opinion about a movie before the movie is actually released? The crowd opinion is here expressed by the distribution of ratings given by a sufficient amount of people. Consequently, the pre-release crowd opinion prediction can be regarded as a Label Distribution Learning (LDL) problem. In order to solve this problem, a Label Distribution Support Vector Regressor (LDSVR) is proposed in this paper. The basic idea of LDSVR is to fit a sigmoid function to each component of the label distribution simultaneously by a multi-output support vector machine. Experimental results show that LDSVR can accurately predict peoples’s rating distribution about a movie just based on the pre-release metadata of the movie.
【Keywords】:
【Paper Link】 【Pages】:3518-3524
【Authors】: Robby Goetschalckx ; Alan Fern ; Prasad Tadepalli
【Abstract】: In this paper we investigate the use of coactive learning in a multitask setting. In coactive learning, an expert presents the learner with a problem and the learner returns a candidate solution. The expert then improves on the solution if necessary and presents the improved solution to the learner. The goal for the learner is to learn to produce solutions which cannot be further improved by the expert while minimizing the average expert effort. In this paper, we consider the setting where there are multiple experts (tasks), and in each iteration one expert presents a problem to the learner. While the experts are expected to have different solution preferences, they are also assumed to share similarities, which should enable generalization across experts. We analyze several algorithms for this setting and derive bounds on the average expert effort during learning. Our main contribution is the balanced Perceptron algorithm, which is the first coactive learning algorithm that is both able to generalize across experts when possible, while also guaranteeing convergence to optimal solutions for individual experts. Our experiments in three domains confirm that this algorithm is effective in the multitask setting, compared to natural baselines.
【Keywords】:
【Paper Link】 【Pages】:3525-3531
【Authors】: André Ricardo Gonçalves ; Fernando J. Von Zuben ; Arindam Banerjee
【Abstract】: A common way of attacking multi-label classification problems is by splitting it into a set of binary classification problems, then solving each problem independently using traditional single-label methods. Nevertheless, by learning classifiers separately the information about the relationship between labels tends to be neglected. Built on recent advances in structure learning in Ising Markov Random Fields (I-MRF), we propose a multi-label classification algorithm that explicitly estimate and incorporate label dependence into the classifiers learning process by means of a sparse convex multi-task learning formulation.Extensive experiments considering several existing multi-label algorithms indicate that the proposed method, while conceptually simple, outperforms the contenders in several datasets and performance metrics. Besides that, the conditional dependence graph encoded in the I-MRF provides a useful information that can be used in a posterior investigation regarding the reasons behind the relationship between labels.
【Keywords】:
【Paper Link】 【Pages】:3532-3539
【Authors】: Bin Gu ; Victor S. Sheng ; Shuo Li
【Abstract】: Model selection is an important problem of cost-sensitive SVM (CS-SVM). Although using solution path to find global optimal parameters is a powerful method for model selection, it is a challenge to extend the framework to solve two regularization parameters of CS-SVM simultaneously. To overcome this challenge, we make three main steps in this paper. (i) A critical-regions-based bi-parameter space partition algorithm is proposed to present all piecewise linearities of CS-SVM. (ii) An invariant-regions-based bi-parameter space partition algorithm is further proposed to compute empirical errors for all parameter pairs. (iii) The global optimal solutions for K-fold cross validation are computed by superposing K invariant region based bi-parameter space partitions into one. The three steps constitute the model selection of CS-SVM which can find global optimal parameter pairs in K-fold cross validation. Experimental results on seven normal datsets and four imbalanced datasets, show that our proposed method has better generalization ability and than various kinds of grid search methods, however, with less running time.
【Keywords】:
【Paper Link】 【Pages】:3540-3546
【Authors】: Xiaojie Guo
【Abstract】: Low rank matrix recovery has shown its importance as a theoretic foundation in many areas of information processing. Its solutions are usually obtained in batch mode that requires to load all the data into memory during processing, and thus are hardly applicable on large scale data. Moreover, a fraction of data may be severely contaminated by outliers, which makes accurate recovery significantly more challenging. This paper proposes a novel online robust low rank matrix recovery method to address these difficulties. In particular, we first introduce an online algorithm to solve the problem of low rank matrix completion. Then we move on to low rank matrix recovery from observations with intensive outliers. The outlier support is robustly estimated from a perspective of mixture model. Experiments on both synthetic and real data are conducted to demonstrate the efficacy of our method and show its superior performance over the state-of-the-arts.
【Keywords】:
【Paper Link】 【Pages】:3547-3553
【Authors】: Xiaojie Guo
【Abstract】: The goal of subspace segmentation is to partition a set of data drawn from a union of subspace into their underlying subspaces. The performance of spectral clustering based approaches heavily depends on learned data affinity matrices, which are usually constructed either directly from the raw data or from their computed representations. In this paper, we propose a novel method to simultaneously learn the representations of data and the affinity matrix of representation in a unified optimization framework. A novel Augmented Lagrangian Multiplier based algorithm is designed to effectively and efficiently seek the optimal solution of the problem. The experimental results on both synthetic and real data demonstrate the efficacy of the proposed method and its superior performance over the state-of-the-art alternatives.
【Keywords】:
【Paper Link】 【Pages】:3554-3560
【Authors】: Mandana Hamidi ; Prasad Tadepalli ; Robby Goetschalckx ; Alan Fern
【Abstract】: In this paper, we study the problem of imitation learning of hierarchical policies from demonstrations. The main difficulty in learning hierarchical policies by imitation is that the high level intention structure of the policy, which is often critical for understanding the demonstration, is unobserved. We formulate this problem as active learning of Probabilistic State-Dependent Grammars (PSDGs) from demonstrations. Given a set of expert demonstrations, our approach learns a hierarchical policy by actively selecting demonstrations and using queries to explicate their intentional structure at selected points. Our contributions include a new algorithm for imitation learning of hierarchical policies and principled heuristics for the selection of demonstrations and queries. Experimental results in five different domains exhibit successful learning using fewer queries than a variety of alternatives.
【Keywords】:
【Paper Link】 【Pages】:3561-3568
【Authors】: Biwei Huang ; Kun Zhang ; Bernhard Schölkopf
【Abstract】: Most approaches to causal discovery assume a fixed (or time-invariant) causal model; however, in practical situations, especially in neuroscience and economics, causal relations might be time-dependent for various reasons. This paper aims to identify the time-dependent causal relations from observational data. We consider general formulations for time-varying causal modeling on stochastic processes, which can also capture the causal influence from a certain type of unobserved confounders. We focus on two issues: one is whether such a causal model, including the causal direction, is identifiable from observational data; the other is how to estimate such a model in a principled way. We show that under appropriate assumptions, the causal structure is identifiable according to our formulated model. We then propose a principled way for its estimation by extending Gaussian Process regression, which enables an automatic way to learn how the causal model changes over time. Experimental results on both artificial and real data demonstrate the practical usefulness of time-dependent causal modeling and the effectiveness of the proposed approach for estimation.
【Keywords】:
【Paper Link】 【Pages】:3569-3575
【Authors】: Jin Huang ; Feiping Nie ; Heng Huang
【Abstract】: The Laplacian matrix of a graph can be used in many areas of mathematical research and has a physical interpretation in various theories. However, there are a few open issues in the Laplacian graph construction: (i) Selecting the appropriate scale of analysis, (ii) Selecting the appropriate number of neighbors, (iii) Handling multiscale data, and, (iv) Dealing with noise and outliers. In this paper, we propose that the affinity between pairs of samples could be computed using sparse representation with proper constraints. This parameter free setting automatically produces the Laplacian graph, leads to significant reduction in computation cost and robustness to the outliers and noise. We further provide an efficient algorithm to solve the difficult optimization problem based on improvement of existing algorithms. To demonstrate our motivation, we conduct spectral clustering experiments with benchmark methods. Empirical experiments on 9 data sets demonstrate the effectiveness of our method.
【Keywords】:
【Paper Link】 【Pages】:3576-3582
【Authors】: Wen-bing Huang ; Deli Zhao ; Fuchun Sun ; Huaping Liu ; Edward Y. Chang
【Abstract】: We propose a scalable Gaussian process model for regression by applying a deep neural network as the feature-mapping function. We first pretrain the deep neural network with a stacked denoising auto-encoder in an unsupervised way. Then, we perform a Bayesian linear regression on the top layer of the pre-trained deep network. The resulting model, Deep-Neural-Network-based Gaussian Process (DNN-GP), can learn much more meaningful representation of the data by the finite-dimensional but deep-layered feature-mapping function. Unlike standard Gaussian processes, our model scales well with the size of the training set due to the avoidance of kernel matrix inversion. Moreover, we present a mixture of DNN-GPs to further improve the regression performance. For the experiments on three representative large datasets, our proposed models significantly outperform the state-of-the-art algorithms of Gaussian process regression.
【Keywords】:
【Paper Link】 【Pages】:3583-3589
【Authors】: Yi Huang ; Brian Powers ; Lev Reyzin
【Abstract】: We consider the problem of feature-efficient prediction - a setting where features have costs and the learner is limited by a budget constraint on the total cost of the features it can examine in test time. We focus on solving this problem with boosting by optimizing the choice of base learners in the training phase and stopping the boosting process when the learner's budget runs out. We experimentally show that our method improves upon the boosting approach AdaBoostRS [Reyzin, 2011] and in many cases also outperforms the recent algorithm SpeedBoost [Grubb and Bagnell, 2012]. We provide a theoretical justication for our optimization method via the margin bound. We also experimentally show that our method outperforms pruned decision trees, a natural budgeted classifier.
【Keywords】:
【Paper Link】 【Pages】:3590-3596
【Authors】: Wenhao Jiang ; Feiping Nie ; Heng Huang
【Abstract】: Expressing data vectors as sparse linear combinations of basis elements (dictionary) is widely used in machine learning, signal processing, and statistics. It has been found that dictionaries learned from data are more effective than off-the-shelf ones. Dictionary learning has become an important tool for computer vision. Traditional dictionary learning methods use quadratic loss function which is known sensitive to outliers. Hence they could not learn the good dictionaries when outliers exist. In this paper, aiming at learning dictionaries resistant to outliers, we proposed capped l1-norm based dictionary learning and an efficient iterative re-weighted algorithm to solve the problem. We provided theoretical analysis and carried out extensive experiments on real word datasets and synthetic datasets to show the effectiveness of our method.
【Keywords】:
【Paper Link】 【Pages】:3597-3604
【Authors】: Pooria Joulani ; András György ; Csaba Szepesvári
【Abstract】: Cross-validation (CV) is one of the main tools for performance estimation and parameter tuning in machine learning. The general recipe for computing CV estimate is to run a learning algorithm separately for each CV fold, a computationally expensive process. In this paper, we propose a new approach to reduce the computational burden of CV-based performance estimation. As opposed to all previous attempts, which are specific to a particular learning model or problem domain, we propose a general method applicable to a large class of incremental learning algorithms, which are uniquely fitted to big data problems. In particular, our method applies to a wide range of supervised and unsupervised learning tasks with different performance criteria, as long as the base learning algorithm is incremental. We show that the running time of the algorithm scales logarithmically, rather than linearly, in the number of CV folds. Furthermore, the algorithm has favorable properties for parallel and distributed implementation. Experiments with state-of-the-art incremental learning algorithms confirm the practicality of the proposed method.
【Keywords】:
【Paper Link】 【Pages】:3605-3611
【Authors】: Kirthevasan Kandasamy ; Jeff G. Schneider ; Barnabás Póczos
【Abstract】: This paper studies active posterior estimation in a Bayesian setting when the likelihood is expensive to evaluate. Existing techniques for posterior estimation are based on generating samples representative of the posterior. Such methods do not consider efficiency in terms of likelihood evaluations. In order to be query efficient we treat posterior estimation in an active regression framework. We propose two myopic query strategies to choose where to evaluate the likelihood and implement them using Gaussian processes. Via experiments on a series of synthetic and real examples we demonstrate that our approach is significantly more query efficient than existing techniques and other heuristics for posterior estimation.
【Keywords】:
【Paper Link】 【Pages】:3612-3618
【Authors】: Berk Kapicioglu ; David S. Rosenberg ; Robert E. Schapire ; Tony Jebara
【Abstract】: A fundamental problem underlying location-based tasks is to construct a complete profile of users' spatiotemporal patterns. In many real-world settings, the sparsity of location data makes it difficult to construct such a profile. As a remedy, we describe a Bayesian probabilistic graphical model, called Collaborative Place Model (CPM), which infers similarities across users to construct complete and time-dependent profiles of users' whereabouts from unsupervised location data. We apply CPM to both sparse and dense datasets, and demonstrate how it both improves location prediction performance and provides new insights into users' spatiotemporal patterns.
【Keywords】:
【Paper Link】 【Pages】:3619-3627
【Authors】: George Konidaris ; Leslie Pack Kaelbling ; Tomás Lozano-Pérez
【Abstract】: We introduce a framework that enables an agent to autonomously learn its own symbolic representation of a low-level, continuous environment. Propositional symbols are formalized as names for probability distributions, providing a natural means of dealing with uncertain representations and probabilistic plans. We determine the symbols that are sufficient for computing the probability with which a plan will succeed, and demonstrate the acquisition of a symbolic representation in a computer game domain.
【Keywords】:
【Paper Link】 【Pages】:3628-3634
【Authors】: Xiang Li ; Huaimin Wang ; Bin Gu ; Charles X. Ling
【Abstract】: Large sparse datasets are common in many real-world applications. Linear SVM has been shown to be very efficient for classifying such datasets. However, it is still unknown how data sparseness would affect its convergence behavior. To study this problem in a systematic manner, we propose a novel approach to generate large and sparse data from real-world datasets, using statistical inference and the data sampling process in the PAC framework. We first study the convergence behavior of linear SVM experimentally, and make several observations, useful for real-world applications. We then offer theoretical proofs for our observations by studying the Bayes risk and PAC bound. Our experiment and theoretic results are valuable for learning large sparse datasets with linear SVM.
【Keywords】:
【Paper Link】 【Pages】:3635-3642
【Authors】: Xin Li ; Yuhong Guo
【Abstract】: Multi-label classification with many classes has recently drawn a lot of attention. Existing methods address this problem by performing linear label space transformation to reduce the dimension of label space, and then conducting independent regression for each reduced label dimension. These methods however do not capture nonlinear correlations of the multiple labels and may lead to significant information loss in the process of label space reduction. In this paper, we first propose to exploit kernel canonical correlation analysis (KCCA) to capture nonlinear label correlation information and perform nonlinear label space reduction. Then we develop a novel label space reduction method that explicitly combines linear and nonlinear label space transformations based on CCA and KCCA respectively to address multi-label classification with many classes. The proposed method is a feature-aware label transformation method that promotes the label predictability in the transformed label space from the input features. We conduct experiments on a number of multi-label classification datasets. The proposed approach demonstrates good performance, comparing to a number of state-of-the-art label dimension reduction methods.
【Keywords】:
【Paper Link】 【Pages】:3643-3649
【Authors】: Ya Li ; Xinmei Tian ; Tongliang Liu ; Dacheng Tao
【Abstract】: Given several tasks, multi-task learning (MTL) learns multiple tasks jointly by exploring the interdependence between them. The basic assumption in MTL is that those tasks are indeed related. Existing MTL methods model the task relatedness/interdependence in two different ways, either common parameter-sharing or common feature-sharing across tasks. In this paper, we propose a novel multi-task learning method to jointly learn shared parameters and shared feature representation. Our objective is to learn a set of common features with which the tasks are related as closely as possible, therefore common parameters shared across tasks can be optimally learned. We present a detailed deviation of our multi-task learning method and propose an alternating algorithm to solve the non-convex optimization problem. We further present a theoretical bound which directly demonstrates that the proposed multi-task learning method can successfully model the relatedness via joint common parameter- and common feature-learning. Extensive experiments are conducted on several real world multi-task learning datasets. All results demonstrate the effectiveness of our multi-task model and feature joint learning method.
【Keywords】:
【Paper Link】 【Pages】:3650-3656
【Authors】: Yitan Li ; Linli Xu ; Fei Tian ; Liang Jiang ; Xiaowei Zhong ; Enhong Chen
【Abstract】: Recently significant advances have been witnessed in the area of distributed word representations based on neural networks, which are also known as word embeddings. Among the new word embedding models, skip-gram negative sampling (SGNS) in the word2vec toolbox has attracted much attention due to its simplicity and effectiveness. However, the principles of SGNS remain not well understood, except for a recent work that explains SGNS as an implicit matrix factorization of the pointwise mutual information (PMI) matrix. In this paper, we provide a new perspective for further understanding SGNS. We point out that SGNS is essentially a representation learning method, which learns to represent the co-occurrence vector for a word. Based on the representation learning view, SGNS is in fact an explicit matrix factorization (EMF) of the words’ co-occurrence matrix. Furthermore, extended supervised word embedding can be established based on our proposed representation learning view.
【Keywords】:
【Paper Link】 【Pages】:3657-3663
【Authors】: Ronghua Liang ; Xiao-Xin Li
【Abstract】: Mixed occlusions commonly consist in real-world face images and bring with it great challenges for automatic face recognition. The existing methods usually utilize the same reconstruction error to code the occluded test image with respect to the labeled training set and simultaneously to estimate the occlusion/feature support. However, this error coding model might not be applicable for face recognition with mixed occlusions. For mixed occlusions, the error used to code the test image, called the discriminative error, and the error used to estimate the occlusion support, called the structural error, might have totally different behaviors. By combining the two various errors with the occlusion support, we present an extended error coding model, dubbed Mixed Error Coding (MEC). To further enhance discriminability and feature selection ability, we also incorporate into MEC the hidden feature selection technology of the subspace learning methods in the domain of the image gradient orientations. Experiments demonstrate the effectiveness and robustness of the proposed MEC model in dealing with mixed occlusions.
【Keywords】:
【Paper Link】 【Pages】:3664-3670
【Authors】: Ming Lin ; Zhen-Zhong Lan ; Alexander G. Hauptmann
【Abstract】: The Restricted Isometric Property (R.I.P.) is a very important condition for recovering sparse vectors from high dimensional space. Traditional methods often rely on R.I.P or its relaxed variants. However, in real applications, features are often correlated to each other, which makes these assumptions too strong to be useful. In this paper, we study the sparse recovery problem in which the feature matrix is strictly non-R.I.P. We prove that when features exhibit cluster structures, which often happens in real applications, we are able to recover the sparse vector consistently. The consistency comes from our proposed density correction algorithm, which removes the variance of estimated cluster centers using cluster density. The proposed algorithm converges geometrically, achieves nearly optimal recovery bound O(s2 log(d)) where s is the sparsity and d is the nominal dimension.
【Keywords】:
【Paper Link】 【Pages】:3671-3677
【Authors】: Rongcheng Lin ; Huayu Li ; Xiaojun Quan ; Richang Hong ; Zhiang Wu ; Yong Ge
【Abstract】: In this paper, we propose a stratified topic model(STM). Instead of directly modeling and inferring flat topics or hierarchically structured topics, we use the stratified relationships in topic hierarchies to regularize the flat topics. The topic structures are captured by a hierarchical clustering method and play as constraints during the learning process. We propose two theoretically sound and practical inference methods to solve the model. Experimental results with two real world data sets and various evaluation metrics demonstrate the effectiveness of the proposed model.
【Keywords】:
【Paper Link】 【Pages】:3678-3684
【Authors】: Huaping Liu ; Jie Qin ; Hong Cheng ; Fuchun Sun
【Abstract】: Kernel sparse coding is an effective strategy to capture the non-linear structure of data samples. However,how to learn a robust kernel dictionary remains an open problem. In this paper, we propose a new optimization model to learn the robust kernel dictionary while isolating outliers in the training samples. This model is essentially based on the decomposition of the reconstruction error into small dense noises and large sparse outliers. The outlier error term is formulated as the product of the sample matrix in the feature space and a diagonal coefficient matrix. This facilitates the kernelized dictionary learning. To solve the non-convex optimization problem, we develop a whole sequence convergent algorithm which guarantees the obtained solution sequence is a Cauchy sequence. The experimental results show that the proposed robust kernel dictionary learning method provides significant performance improvement.
【Keywords】:
【Paper Link】 【Pages】:3685-3691
【Authors】: Dixin Luo ; Hongteng Xu ; Yi Zhen ; Xia Ning ; Hongyuan Zha ; Xiaokang Yang ; Wenjun Zhang
【Abstract】: We propose a Multi-task Multi-dimensional Hawkes Process (MMHP) for modeling event sequences where there exist multiple triggering patterns within sequences and structures across sequences.MMHP is able to model the dynamics of multiple sequences jointly by imposing structural constraints and thus systematically uncover clustering structure among sequences.We propose an effective and robust optimization algorithm to learn MMHP models, which takes advantage of alternating direction method of multipliers (ADMM), majorization minimization and Euler-Lagrange equations.Our experimental results demonstrate that MMHP performs well on both synthetic and real data.
【Keywords】:
【Paper Link】 【Pages】:3692-3698
【Authors】: James MacGlashan ; Michael L. Littman
【Abstract】: Research in learning from demonstration can generally be grouped into either imitation learning or intention learning. In imitation learning, the goal is to imitate the observed behavior of an expert and is typically achieved using supervised learning techniques. In intention learning, the goal is to learn the intention that motivated the expert's behavior and to use a planning algorithm to derive behavior. Imitation learning has the advantage of learning a direct mapping from states to actions, which bears a small computational cost. Intention learning has the advantage of behaving well in novel states, but may bear a large computational cost by relying on planning algorithms in complex tasks. In this work, we introduce receding horizon inverse reinforcement learning, in which the planning horizon induces a continuum between these two learning paradigms. We present empirical results on multiple domains that demonstrate that performing IRL with a small, but non-zero, receding planning horizon greatly decreases the computational cost of planning while maintaining superior generalization performance compared to imitation learning.
【Keywords】:
【Paper Link】 【Pages】:3699-3706
【Authors】: Xue Mao ; Zhouyu Fu ; Ou Wu ; Weiming Hu
【Abstract】: Kernel SVM suffers from high computational complexity when dealing with large-scale nonlinear datasets. To address this issue, locally linear classifiers have been proposed for approximating nonlinear decision boundaries with locally linear functions using a local coding scheme. The effectiveness of such coding scheme depends heavily on the quality of anchor points chosen to produce the local codes. Existing methods usually involve a phase of unsupervised anchor point learning followed by supervised classifier learning. Thus, the anchor points and classifiers are obtained separately whereas the learned anchor points may not be optimal for the discriminative task. In this paper, we present a novel fully supervised approach for anchor point learning. A single optimization problem is formulated over both anchor point and classifier variables, optimizing the initial anchor points jointly with the classifiers to minimize the classification risk. Experimental results show that our method outperforms other competitive methods which employ unsupervised anchor point learning and achieves performance on par with the kernel SVM albeit with much improved efficiency.
【Keywords】:
【Paper Link】 【Pages】:3707-3713
【Authors】: Deiner Mena ; Elena Montañés ; José Ramón Quevedo ; Juan José del Coz
【Abstract】: Probabilistic Classifiers Chains (PCC) offers interesting properties to solve multi-label classification tasks due to its ability to estimate the joint probability of the labels. However, PCC presents the major drawback of having a high computational cost in the inference process required to predict new samples. Lately, several approaches have been proposed to overcome this issue, including beam search and an epsilon-Approximate algorithm based on uniform-cost search. Surprisingly, the obvious possibility of using heuristic search has not been considered yet. This paper studies this alternative and proposes an admisible heuristic that, applied in combination with A* algorithm, guarantees, not only optimal predictions in terms of subset 0/1 loss, but also that it always explores less nodes than epsilon-Approximate algorithm. In the experiments reported, the number of nodes explored by our method is less than two times the number of labels for all datasets analyzed. But, the difference in explored nodes must be large enough to compensate the overhead of the heuristic in order to improve prediction time. Thus, our proposal may be a good choice for complex multi-label problems.
【Keywords】:
【Paper Link】 【Pages】:3714-3720
【Authors】: Loizos Michael
【Abstract】: Science ultimately seeks to reliably predict aspects of the future; but, how is this even possible in light of the logical paradox that making a prediction may cause the world to evolve in a manner that defeats it? We show how learning can naturally resolve this conundrum. The problem is studied within a causal or temporal version of the Probably Approximately Correct semantics, extended so that a learner's predictions are first recorded in the states upon which the learned hypothesis is later applied. On the negative side, we make concrete the intuitive impossibility of predicting reliably, even under very weak assumptions. On the positive side, we identify conditions under which a generic learning schema, akin to randomized trials, supports agnostic learnability.
【Keywords】:
【Paper Link】 【Pages】:3721-3727
【Authors】: Adway Mitra ; Chiranjib Bhattacharyya ; Soma Biswas
【Abstract】: In this paper, we study Bayesian techniques for entity discovery and temporal segmentation of videos. Existing temporal video segmentation techniques are based on low-level features, and are usually suitable for discovering short, homogeneous shots rather than diverse scenes, each of which contains several such shots. We define scenes in terms of semantic entities (eg. persons). This is the first attempt at entity-driven scene discovery in videos, without using meta-data like scripts. The problem is hard because we have no explicit prior information about the entities and the scenes. However such sequential data exhibit temporal coherence in multiple ways, and this provides implicit cues. To capture these, we propose a Bayesian generative model- EntScene, that represents entities with mixture components and scenes with discrete distributions over these components. The most challenging part of this approach is the inference, as it involves complex interactions of latent variables. To this end, we propose an algorithm based on Dynamic Blocked Gibbs Sampling, that attempts to jointly learn the components and the segmentation, by progressively merging an initial set of short segments. The proposed algorithm compares favourably against suitably designed baselines on several TV-series videos. We extend the method to an unexplored problem: temporal co-segmentation of videos containing same entities.
【Keywords】:
【Paper Link】 【Pages】:3728-3734
【Authors】: Kaixiang Mo ; Bo Liu ; Lei Xiao ; Yong Li ; Jie Jiang
【Abstract】: In online display advertising, state-of-the-art Click Through Rate(CTR) prediction algorithms rely heavily on historical information, and they work poorly on growing number of new ads without any historical information. This is known as the the cold start problem. For image ads, current state-of-the-art systems use handcrafted image features such as multimedia features and SIFT features to capture the attractiveness of ads. However, these handcrafted features are task dependent, inflexible and heuristic. In order to tackle the cold start problem in image display ads, we propose a new feature learning architecture to learn the most discriminative image features directly from raw pixels and user feedback in the target task. The proposed method is flexible and does not depend on human heuristic. Extensive experiments on a real world dataset with 47 billion records show that our feature learning method outperforms existing handcrafted features significantly, and it can extract discriminative and meaningful features.
【Keywords】:
【Paper Link】 【Pages】:3735-3741
【Authors】: Thibaut Munzer ; Bilal Piot ; Matthieu Geist ; Olivier Pietquin ; Manuel Lopes
【Abstract】: In this work, we introduce the first approach to the Inverse Reinforcement Learning (IRL) problem in relational domains. IRL has been used to recover a more compact representation of the expert policy leading to better generalization performances among different contexts. On the other hand, relational learning allows representing problems with a varying number of objects (potentially infinite), thus provides more generalizable representations of problems and skills. We show how these different formalisms allow one to create a new IRL algorithm for relational domains that can recover with great efficiency rewards from expert data that have strong generalization and transfer properties. We evaluate our algorithm in representative tasks and study the impact of diverse experimental conditions such as : the number of demonstrations, knowledge about the dynamics, transfer among varying dimensions of a problem, and changing dynamics.
【Keywords】:
【Paper Link】 【Pages】:3742-3748
【Authors】: Frank Neumann ; Carsten Witt
【Abstract】: Evolutionary algorithms have been frequently used for dynamic optimization problems. With this paper, we contribute to the theoretical understanding of this research area. We present the first computational complexity analysis of evolutionary algorithms for a dynamic variant of a classical combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes.
【Keywords】:
【Paper Link】 【Pages】:3749-3755
【Authors】: Yulei Niu ; Zhiwu Lu ; Songfang Huang ; Peng Han ; Ji-Rong Wen
【Abstract】: In this paper, we propose a Weakly Supervised Matrix Factorization (WSMF) approach to the problem of image parsing with noisy tags, i.e., segmenting noisily tagged images and then classifying the regions only with image-level labels. Instead of requiring clean but expensive pixel-level labels as strong supervision in the traditional image parsing methods, we take noisy image-level labels as weakly-supervised constraints. Specifically, we first over-segment all the images into multiple regions which are initially labeled based upon the image-level labels. Moreover, from a low-rank matrix factorization viewpoint, we formulate noisily tagged image parsing as a weakly supervised matrix factorization problem. Finally, we develop an efficient algorithm to solve the matrix factorization problem. Experimental results show the promising performance of the proposed WSMF algorithm in comparison with the state-of-the-arts.
【Keywords】:
【Paper Link】 【Pages】:3756-3762
【Authors】: Francesco Orsini ; Paolo Frasconi ; Luc De Raedt
【Abstract】: We introduce a novel kernel that upgrades the Weisfeiler-Lehman and other graph kernels to effectively exploit high-dimensional and continuous vertex attributes. Graphs are first decomposed into subgraphs. Vertices of the subgraphs are then compared by a kernel that combines the similarity of their labels and the similarity of their structural role, using a suitable vertex invariant. By changing this invariant we obtain a family of graph kernels which includes generalizations of Weisfeiler-Lehman, NSPDK, and propagation kernels. We demonstrate empirically that these kernels obtain state-of-the-art results on relational data sets.
【Keywords】:
【Paper Link】 【Pages】:3763-3769
【Abstract】: Gaussian processes (GPs) provide a nonparametric representation of functions. However, classical GP inference suffers from high computational cost for big data. In this paper, we propose a new Bayesian approach, EigenGP, that learns both basis dictionary elements — eigenfunctions of a GP prior — and prior precisions in a sparse finite model. It is well known that, among all orthogonal basis functions, eigenfunctions can provide the most compact representation. Unlike other sparse Bayesian finite models where the basis function has a fixed form, our eigenfunctions live in a reproducing kernel Hilbert space as a finite linear combination of kernel functions. We learn the dictionary elements — eigenfunctions — and the prior precisions over these elements as well as all the other hyperparameters from data by maximizing the model marginal likelihood. We explore computational linear algebra to simplify the gradient computation significantly. Our experimental results demonstrate improved predictive performance of EigenGP over alternative sparse GP methods as well as relevance vector machines.
【Keywords】:
【Paper Link】 【Pages】:3770-3776
【Authors】: Piyush Rai ; Changwei Hu ; Matthew Harding ; Lawrence Carin
【Abstract】: Tensor factorization methods provide a useful way to extract latent factors from complex multirelational data, and also for predicting missing data. Developing tensor factorization methods for massive tensors, especially when the data are binary- or count-valued (which is true of most real-world tensors), however, remains a challenge. We develop a scalable probabilistic tensor factorization framework that enables us to perform efficient factorization of massive binary and count tensor data. The framework is based on (i) the Polya-Gamma augmentation strategy which makes the model fully locally conjugate and allows closed-form parameter updates when data are binary- or count-valued; and (ii) an efficient online Expectation Maximization algorithm, which allows processing data in small mini-batches, and facilitates handling massive tensor data. Moreover, various types of constraints on the factor matrices (e.g., sparsity, non-negativity) can be incorporated under the proposed framework, providing good interpretability, which can be useful for qualitative analyses of the results. We apply the proposed framework on analyzing several binary- and count-valued real-world data sets.
【Keywords】:
【Paper Link】 【Pages】:3777-3783
【Authors】: Aaditya Ramdas ; Leila Wehbe
【Abstract】: This paper deals with the problem of nonparametric independence testing, a fundamental decision-theoretic problem that asks if two arbitrary (possibly multivariate) random variables X,Y are independent or not, a question that comes up in many fields like causality and neuroscience. While quantities like correlation of X,Y only test for (univariate) linear independence, natural alternatives like mutual information of X,Y are hard to estimate due to a serious curse of dimensionality. A recent approach, avoiding both issues, estimates norms of an operator in Reproducing Kernel Hilbert Spaces (RKHSs). Our main contribution is strong empirical evidence that by employing shrunk operators when the sample size is small, one can attain an improvement in power at low false positive rates. We analyze the effects of Stein shrinkage on a popular test statistic called HSIC (Hilbert-Schmidt Independence Criterion). Our observations provide insights into two recently proposed shrinkage estimators, SCOSE and FCOSE — we prove that SCOSE is (essentially) the optimal linear shrinkage method for estimating the true operator; however, the non-linearly shrunk FCOSE usually achieves greater improvements in test power. This work is important for more powerful nonparametric detection of subtle nonlinear dependencies for small samples.
【Keywords】:
【Paper Link】 【Pages】:3784-3790
【Authors】: Khaled S. Refaat ; Adnan Darwiche
【Abstract】: We propose a technique for decomposing and compressing the dataset in the parameter learning problem in Markov random fields. Our technique applies to incomplete datasets and exploits variables that are always observed in the given dataset. We show that our technique allows exact computation of the gradient and the likelihood, and can lead to orders-of-magnitude savings in learning time.
【Keywords】:
【Paper Link】 【Pages】:3791-3797
【Authors】: Sai Nageswar Satchidanand ; Harini Ananthapadmanaban ; Balaraman Ravindran
【Abstract】: Transductive inference on graphs has been garnering increasing attention due to the connected nature of many real-life data sources, such as online social media and biological data (protein-protein interaction network, gene networks, etc.). Typically relational information in the data is encoded as edges in a graph but often it is important to model multi-way interactions, such as in collaboration networks and reaction networks. In this work we model multi-way relations as hypergraphs and extend the discriminative random walk (DRW) framework, originally proposed for transductive inference on single graphs, to the case of multiple hypergraphs. We use the extended DRW framework for inference on multi-view, multi-relational data in a natural way, by representing attribute descriptions of the data also as hypergraphs. We further exploit the structure of hypergraphs to modify the random walk operator to take into account class imbalance in the data. This work is among very few approaches to explicitly address class imbalance in the in-network classification setting, using random walks. We compare our approach to methods proposed for inference on hypergraphs, and to methods proposed for multi-view data and show that empirically we achieve better performance. We also compare to methods specifically tailored for class-imbalanced data and show that our approach achieves comparable performance even on non-network data.
【Keywords】:
【Paper Link】 【Pages】:3798-3804
【Authors】: Ming Shao ; Sheng Li ; Zhengming Ding ; Yun Fu
【Abstract】: Clustering has been one of the most critical unsupervised learning techniques that has been widely applied in data mining problems. As one of its branches, graph clustering enjoys its popularity due to its appealing performance and strong theoretical supports. However, the eigen-decomposition problems involved are computationally expensive. In this paper, we propose a deep structure with a linear coder as the building block for fast graph clustering, called Deep Linear Coding (DLC). Different from conventional coding schemes, we jointly learn the feature transform function and discriminative codings, and guarantee that the learned codes are robust in spite of local distortions. In addition, we use the proposed linear coders as the building blocks to formulate a deep structure to further refine features in a layerwise fashion. Extensive experiments on clustering tasks demonstrate that our method performs well in terms of both time complexity and clustering accuracy. On a large-scale benchmark dataset (580K), our method runs 1500 times faster than the original spectral clustering.
【Keywords】:
【Paper Link】 【Pages】:3805-3811
【Authors】: Qiquan Shi ; Haiping Lu
【Abstract】: Principal component analysis (PCA) is an unsupervised method for learning low-dimensional features with orthogonal projections. Multilinear PCA methods extend PCA to deal with multidimensional data (tensors) directly via tensor-to-tensor projection or tensor-to-vector projection (TVP). However, under the TVP setting, it is difficult to develop an effective multilinear PCA method with the orthogonality constraint. This paper tackles this problem by proposing a novel Semi-Orthogonal Multilinear PCA (SO-MPCA) approach. SO-MPCA learns low-dimensional features directly from tensors via TVP by imposing the orthogonality constraint in only one mode. This formulation results in more captured variance and more learned features than full orthogonality. For better generalization, we further introduce a relaxed start (RS) strategy to get SO-MPCA-RS by fixing the starting projection vectors, which increases the bias and reduces the variance of the learning model. Experiments on both face (2D) and gait (3D) data demonstrate that SO-MPCA-RS outperforms other competing algorithms on the whole, and the relaxed start strategy is also effective for other TVP-based PCA methods.
【Keywords】:
【Paper Link】 【Pages】:3812-3819
【Authors】: Kilho Shin ; Adrian Pino Angulo
【Abstract】: Feature selection measures are often explained by the analogy to a rule to measure the “distance” of sets of features to the “closest” ideal sets of features. An ideal feature set is such that it can determine classes uniquely and correctly. This way of explanation was just an analogy before this paper. In this paper, we show a way to map arbitrary feature sets of datasets into a common metric space, which is indexed by a real number p with 1 ≤ p ≤ ∞. Since this determines the distance between an arbitrary pair of feature sets, even if they belong to different datasets, the distance of a feature set to the closest ideal feature set can be used as a feature selection measure. Surprisingly, when p = 1, the measure is identical to the Bayesian risk, which is probably the feature selection measure that is used the most widely in the literature. For 1 < p ≤ ∞, the measure is novel and has significantly different properties from the Bayesian risk. We also investigate the correlation between measurements by these measures and classification accuracy through experiments. As a result, we show that our novel measures with p > 1 exhibit stronger correlation than the Bayesian risk.
【Keywords】:
【Paper Link】 【Pages】:3820-3826
【Authors】: Yangqiu Song ; Shusen Wang ; Haixun Wang
【Abstract】: Concepts embody the knowledge to facilitate our cognitive processes of learning. Mapping short texts to a large set of open domain concepts has gained many successful applications. In this paper, we unify the existing conceptualization methods from a Bayesian perspective, and discuss the three modeling approaches: descriptive, generative, and discriminative models. Motivated by the discussion of their advantages and shortcomings, we develop a generative + descriptive modeling approach. Our model considers term relatedness in the context, and will result in disambiguated conceptualization. We show the results of short text clustering using a news title data set and a Twitter message data set, and demonstrate the effectiveness of the developed approach compared with the state-of-the-art conceptualization and topic modeling approaches.
【Keywords】:
【Paper Link】 【Pages】:3827-3833
【Authors】: Alessandro Sperduti
【Abstract】: In the context of sequence processing, we study the relationship between single-layer feedforward neural networks,that have simultaneous access to all items composing a sequence, and single-layer recurrent neural networks which access information one step at a time.We treat both linear and nonlinear networks, describing a constructive procedure, based on linear autoencoders for sequences, that given a feedforward neural network shows how to define a recurrent neural network that implements the same function in time. Upper bounds on the required number of hidden units for the recurrent network as a function of some features of the feedforward network are given. By separating the functional from the memory component, the proposed procedure suggests new efficient learning as well as interpretation procedures for recurrent neural networks.
【Keywords】:
【Paper Link】 【Pages】:3834-3840
【Authors】: Lu Sun ; Mineichi Kudo
【Abstract】: Multi-label classification is a challenging and appealing supervised learning problem where a subset of labels, rather than a single label seen in traditional classification problems, is assigned to a single test instance. Classifier chains based methods are a promising strategy to tackle multi-label classification problems as they model label correlations at acceptable complexity. However, these methods are difficult to approximate the underlying dependency in the label space, and suffer from the problems of poorly ordered chain and error propagation. In this paper, we propose a novel polytree-augmented classifier chains method to remedy these problems. A polytree is used to model reasonable conditional dependence between labels over attributes, under which the directional relationship between labels within causal basins could be appropriately determined. In addition, based on the max-sum algorithm, exact inference would be performed on polytrees at reasonable cost, preventing from error propagation. The experiments performed on both artificial and benchmark multi-label data sets demonstrated that the proposed method is competitive with the state-of-the-art multi-label classification methods.
【Keywords】:
【Paper Link】 【Pages】:3841-3848
【Authors】: Siliang Tang ; Fei Wu ; Si Li ; Weiming Lu ; Zhongfei Zhang ; Yueting Zhuang
【Abstract】: Generating a coherent synopsis and revealing the development threads for news stories from the increasing amounts of news content remains aformidable challenge. In this paper, we proposed a hddCRP (hybird distant-dependent ChineseRestaurant Process) based HierARChical tOpic model for news Article cLustering, abbreviated as CHARCOAL. Given a bunch of news articles, the outcome of CHARCOAL is threefold: 1) it aggregates relevant new articles into clusters (i.e., stories); 2) it disentangles the chain links (i.e., storyline) between articles in their describing story; 3) it discerns the topics that each story is assigned (e.g., Malaysia Airlines Flight 370 story belongs to the aircraft accident topic and U.S presidential election stories belong to the politics topic). CHARCOAL completes this task by utilizing a hddCRP as prior, and the entities (e.g., names of persons, organizations, or locations) that appear in news articles as clues. Moveover, the adaptation of nonparametric nature in CHARCOAL makes our model can adaptively learn the appropriate number of stories and topics from news corpus. The experimental analysis and results demonstrate both interpretability and superiority of the proposed approach.
【Keywords】:
【Paper Link】 【Pages】:3849-3855
【Authors】: Shaozhe Tao ; Daniel Boley ; Shuzhong Zhang
【Abstract】: We compare the convergence behavior of ADMM (alternating direction method of multipliers), [F]ISTA ([fast] iterative shrinkage and thresholding algorithm) and CD (coordinate descent) methods on the model L1-regularized least squares problem (aka LASSO). We use an eigen analysis of the operators to compare their local convergence rates when close to the solution. We find that, when applicable, CD is often much faster than the other iterations, when close enough to the solution. When far from the solution, the spectral analysis implies that one can often get a sequence of iterates that appears to stagnate, but is actually taking small constant steps toward the solution. We also illustrate how the unaccelerated ISTA algorithm can sometimes be faster compared to FISTA when close enough to the solution.
【Keywords】:
【Paper Link】 【Pages】:3856-3864
【Authors】: Nicholay Topin ; Nicholas Haltmeyer ; Shawn Squire ; John Winder ; Marie desJardins ; James MacGlashan
【Abstract】: We introduce a novel framework for option discovery and learning transfer in complex domains that are represented as object-oriented Markov decision processes (OO-MDPs) [Diuk et al., 2008]. Our framework, Portable Option Discovery (POD), extends existing option discovery methods, and enables transfer across related but different domains by providing an unsupervised method for finding a mapping between object-oriented domains with different state spaces. The framework also includes heuristic approaches for increasing the efficiency of the mapping process. We present the results of applying POD to Pickett and Barto's [2002] PolicyBlocks and MacGlashan's [2013] Option-Based Policy Transfer in two application domains. We show that our approach can discover options effectively, transfer options among different domains, and improve learning performance with low computational overhead.
【Keywords】:
【Paper Link】 【Pages】:3865-3873
【Authors】: Joel Veness ; Marcus Hutter ; Laurent Orseau ; Marc G. Bellemare
【Abstract】: This paper revisits the problem of learning a k-CNF Boolean function from examples, for fixed k, in the context of online learning under the logarithmic loss. We give a Bayesian interpretation to one of Valiant’s classic PAC learning algorithms, which we then build upon to derive three efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF Boolean function. We analyze the loss of our methods, and show that the cumulative log-loss can be upper bounded by a polynomial function of the size of each example.
【Keywords】:
【Paper Link】 【Pages】:3874-3881
【Authors】: Saulo Moraes Villela ; Saul de Castro Leite ; Raul Fonseca Neto
【Abstract】: Microarray experiments are capable of measuring the expression level of thousands of genes simultaneously. Dealing with this enormous amount of information requires complex computation. Support Vector Machines (SVM) have been widely used with great efficiency to solve classification problems that have high dimension. In this sense, it is plausible to develop new feature selection strategies for microarray data that are associated with this type of classifier. Therefore, we propose, in this paper, a new method for feature selection based on an ordered search process to explore the space of possible subsets. The algorithm, called Admissible Ordered Search (AOS), uses as evaluation function the margin values estimated for each hypothesis by a SVM classifier. An important theoretical contribution of this paper is the development of the projected margin concept. This value is computed as the margin vector projection on a lower dimensional subspace and is used as an upper bound for the current value of the hypothesis in the search process. This enables great economy in runtime and consequently efficiency in the search process as a whole. The algorithm was tested using five different microarray data sets yielding superior results when compared to three representative feature selection methods.
【Keywords】:
【Paper Link】 【Pages】:3882-3889
【Authors】: Chenguang Wang ; Yangqiu Song ; Dan Roth ; Chi Wang ; Jiawei Han ; Heng Ji ; Ming Zhang
【Abstract】: In knowledge bases or information extraction results, differently expressed relations can be semantically similar (e.g., (X, wrote, Y) and (X,’s written work, Y)). Therefore, grouping semantically similar relations into clusters would facilitate and improve many applications, including knowledge base completion, information extraction, information retrieval, and more. This paper formulates relation clustering as a constrained tripartite graph clustering problem, presents an efficient clustering algorithm and exhibits the advantage of the constrained framework. We introduce several ways that provide side information via must-link and cannot link constraints to improve the clustering results. Different from traditional semi-supervised learning approaches, we propose to use the similarity of relation expressions and the knowledge of entity types to automatically construct the constraints for the algorithm. We show improved relation clustering results on two datasets extracted from human annotated knowledge base (i.e., Freebase) and open information extraction results (i.e., ReVerb data).
【Keywords】:
【Paper Link】 【Pages】:3890-3896
【Authors】: Di Wang ; Xinbo Gao ; Xiumei Wang ; Lihuo He
【Abstract】: Multimodal hashing is essential to cross-media similarity search for its low storage cost and fast query speed. Most existing multimodal hashing methods embedded heterogeneous data into a common low-dimensional Hamming space, and then rounded the continuous embeddings to obtain the binary codes. Yet they usually neglect the inherent discrete nature of hashing for relaxing the discrete constraints, which will cause degraded retrieval performance especially for long codes. For this purpose, a novel Semantic Topic Multimodal Hashing (STMH) is developed by considering latent semantic information in coding procedure. It first discovers clustering patterns of texts and robust factorizes the matrix of images to obtain multiple semantic topics of texts and concepts of images. Then the learned multimodal semantic features are transformed into a common subspace by their correlations. Finally, each bit of unified hash code can be generated directly by figuring out whether a topic or concept is contained in a text or an image. Therefore, the obtained model by STMH is more suitable for hashing scheme as it directly learns discrete hash codes in the coding process. Experimental results demonstrate that the proposed method outperforms several state-of-the-art methods.
【Keywords】:
【Paper Link】 【Pages】:3897-3903
【Authors】: Di Wang ; Xiaoqin Zhang ; Mingyu Fan ; Xiuzi Ye
【Abstract】: Support vector machines (SVMs) play a very dominant role in data classification due to their good generalization performance. However, they suffer from the high computational complexity in the classification phase when there are a considerable number of support vectors (SVs). Then it is desirable to design efficient algorithms in the classification phase to deal with the datasets of real-time pattern recognition systems. To this end, we propose a novel classifier called HMLSVMs (Hierarchical Mixing Linear Support Vector Machines) in this paper, which has a hierarchical structure with a mixing linear SVMs classifier at each node and predicts the label of a sample using only a few hyperplanes. We also give a generalization error bound for the class of locally linear SVMs (LLSVMs) based on the Rademacher theory, which ensures that overfitting can be effectively avoided. Experimental evaluations shows, while maintaining a comparable classification performance to kernel SVMs (KSVMs), the proposed classifier achieves the high efficiency in the classification stage.
【Keywords】:
【Paper Link】 【Pages】:3904-3910
【Authors】: Qifan Wang ; Luo Si ; Bin Shen
【Abstract】: Hashing approach becomes popular for fast similarity search in many large scale applications.Real world data are usually with multiple modalities or having different representations from multiple sources. Various hashing methods have been proposed to generate compact binary codes from multi-modal data.However, most existing multi-modal hashing techniques assume that each data example appears in all modalities, or at least there is one modality containing all data examples. But in real applications, it is often the case that every modality suffers from the missing of some data and therefore results in many partial examples,i.e., examples with some modalities missing.In this paper, we present a novel hashing approach to deal with Partial Multi-Modal data. In particular, the hashing codes are learned by simultaneously ensuring the data consistency among different modalities via latent subspace learning, and preserving data similarity within the same modality through graph Laplacian. We then further improve the codes via orthogonal rotation based on the orthogonal invariant property of our formulation.Experiments on two multi-modal datasets demonstrate the superior performance of the proposed approach over several state-of-the-art multi-modal hashing methods.
【Keywords】:
【Paper Link】 【Pages】:3911-3917
【Authors】: Qifan Wang ; Zhiwei Zhang ; Luo Si
【Abstract】: Hashing method becomes popular for large scale similarity search due to its storage and computational efficiency. Many machine learning techniques, ranging from unsupervised to supervised, have been proposed to design compact hashing codes. Most of the existing hashing methods generate binary codes to efficiently find similar data examples to a query. However, the ranking accuracy among the retrieved data examples is not modeled. But in many real world applications, ranking measure is important for evaluating the quality of hashing codes.In this paper, we propose a novel Ranking Preserving Hashing (RPH) approach that directly optimizes a popular ranking measure, Normalized Discounted Cumulative Gain (NDCG), to obtain effective hashing codes with high ranking accuracy. The main difficulty in the direct optimization of NDCG measure is that it depends on the ranking order of data examples, which forms a non-convex non-smooth optimization problem. We address this challenge by optimizing the expectation of NDCG measure calculated based on a linear hashing function. A gradient descent method is designed to achieve the goal. An extensive set of experiments on two large scale datasets demonstrate the superior ranking performance of the proposed approach over several state-of-the-art hashing methods.
【Keywords】:
【Paper Link】 【Pages】:3918-3924
【Authors】: William Yang Wang ; Kathryn Mazaitis ; William W. Cohen
【Abstract】: In predicate invention (PI), new predicates are introduced into a logical theory, usually by rewriting a group of closely-related rules to use a common invented predicate as a "subroutine". PI is difficult, since a poorly-chosen invented predicate may lead to error cascades. Here we suggest a "soft" version of predicate invention: instead of explicitly creating new predicates, we implicitly group closely-related rules by using structured sparsity to regularize their parameters together. We show that soft PI, unlike hard PI, consistently improves over previous strong baselines for structure-learning on two large-scale tasks.
【Keywords】:
【Paper Link】 【Pages】:3925-3931
【Authors】: Xiaoqian Wang ; Yun Liu ; Feiping Nie ; Heng Huang
【Abstract】: As an important machine learning topic, dimensionality reduction has been widely studied and utilized in various kinds of areas. A multitude of dimensionality reduction methods have been developed, among which unsupervised dimensionality reduction is more desirable when obtaining label information requires onerous work. However, most previous unsupervised dimensionality reduction methods call for an affinity graph constructed beforehand, with which the following dimensionality reduction steps can be then performed. Separation of graph construction and dimensionality reduction leads the dimensionality reduction process highly dependent on quality of the input graph. In this paper, we propose a novel graph embedding method for unsupervised dimensionality reduction. We simultaneously conduct dimensionality reduction along with graph construction by assigning adaptive and optimal neighbors according to the projected local distances. Our method doesn’t need an affinity graph constructed in advance, but instead learns the graph concurrently with dimensionality reduction. Thus, the learned graph is optimal for dimensionality reduction. Meanwhile, our learned graph has an explicit block diagonal structure, from which the clustering results could be directly revealed without any postprocessing steps. Extensive empirical results on dimensionality reduction as well as clustering are presented to corroborate the performance of our method.
【Keywords】:
【Paper Link】 【Pages】:3932-3938
【Authors】: Zhangyang Wang ; Yingzhen Yang ; Shiyu Chang ; Jinyan Li ; Simon Fong ; Thomas S. Huang
【Abstract】: Many clustering methods highly depend on extracted features. In this paper, we propose a joint optimization framework in terms of both feature extraction and discriminative clustering. We utilize graph regularized sparse codes as the features, and formulate sparse coding as the constraint for clustering. Two cost functions are developed based on entropy-minimization and maximum-margin clustering principles, respectively, as the objectives to be minimized. Solving such a bi-level optimization mutually reinforces both sparse coding and clustering steps. Experiments on several benchmark datasets verify remarkable performance improvements led by the proposed joint optimization.
【Keywords】:
【Paper Link】 【Pages】:3939-3945
【Authors】: Zhiguang Wang ; Tim Oates
【Abstract】: Inspired by recent successes of deep learning in computer vision, we propose a novel framework for encoding time series as different types of images, namely, Gramian Angular Summation/Difference Fields (GASF/GADF) and Markov Transition Fields (MTF). This enables the use of techniques from computer vision for time series classification and imputation. We used Tiled Convolutional Neural Networks (tiled CNNs) on 20 standard datasets to learn high-level features from the individual and compound GASF-GADF-MTF images. Our approaches achieve highly competitive results when compared to nine of the current best time series classification approaches. Inspired by the bijection property of GASF on 0/1 rescaled data, we train Denoised Auto-encoders (DA) on the GASF images of four standard and one synthesized compound dataset. The imputation MSE on test data is reduced by 12.18% – 48.02% when compared to using the raw data. An analysis of the features and weights learned via tiled CNNs and DAs explains why the approaches work.
【Keywords】:
【Paper Link】 【Pages】:3946-3952
【Authors】: Botong Wu ; Qiang Yang ; Wei-Shi Zheng ; Yizhou Wang ; Jingdong Wang
【Abstract】: Cross-modal hashing is designed to facilitate fast search across domains. In this work, we present a cross-modal hashing approach, called quantized correlation hashing (QCH), which takes into consideration the quantization loss over domains and the relation between domains. Unlike previous approaches that separate the optimization of the quantizer independent of maximization of domain correlation, our approach simultaneously optimizes both processes. The underlying relation between the domains that describes the same objects is established via maximizing the correlation between the hash codes across the domains. The resulting multi-modal objective function is transformed to a unimodal formalization, which is optimized through an alternative procedure. Experimental results on three real world datasets demonstrate that our approach outperforms the state-of-the-art multi-modal hashing methods.
【Keywords】:
【Paper Link】 【Pages】:3953-3959
【Authors】: Jia Wu ; Shirui Pan ; Xingquan Zhu ; Zhihua Cai ; Chengqi Zhang
【Abstract】: In this paper, we propose to represent and classify complicated objects. In order to represent the objects, we propose a multi-graph-view model which uses graphs constructed from multiple graph-views to represent an object. In addition, a bag based multi-graph model is further used to relax labeling by only requiring one label for a bag of graphs, which represent one object. In order to learn classification models, we propose a multi-graph-view bag learning algorithm (MGVBL), which aims to explore subgraph features from multiple graph-views for learning. By enabling a joint regularization across multiple graph-views, and enforcing labeling constraints at the bag and graph levels, MGVBL is able to discover most effective subgraph features across all graph-views for learning. Experiments on real-world learning tasks demonstrate the performance of MGVBL for complicated object classification.
【Keywords】:
【Paper Link】 【Pages】:3960-3966
【Authors】: Yingce Xia ; Haifang Li ; Tao Qin ; Nenghai Yu ; Tie-Yan Liu
【Abstract】: Thompson sampling is one of the earliest randomized algorithms for multi-armed bandits (MAB). In this paper, we extend the Thompson sampling to Budgeted MAB, where there is random cost for pulling an arm and the total cost is constrained by a budget. We start with the case of Bernoulli bandits, in which the random rewards (costs) of an arm are independently sampled from a Bernoulli distribution. To implement the Thompson sampling algorithm in this case, at each round, we sample two numbers from the posterior distributions of the reward and cost for each arm, obtain their ratio, select the arm with the maximum ratio, and then update the posterior distributions. We prove that the distribution-dependent regret bound of this algorithm is O(ln B), where B denotes the budget. By introducing a Bernoulli trial, we further extend this algorithm to the setting that the rewards (costs) are drawn from general distributions, and prove that its regret bound remains almost the same. Our simulation results demonstrate the effectiveness of the proposed algorithm.
【Keywords】:
【Paper Link】 【Pages】:3967-3973
【Authors】: Youlu Xing ; Furao Shen ; Jinxi Zhao
【Abstract】: The proposed Perception Evolution Network (PEN) is a biologically inspired neural network model for unsupervised learning and online incremental learning. It is able to automatically learn suitable prototypes from learning data in an online incremental way, and it does not require the predefined prototype number and similarity threshold. Meanwhile, being more advanced than the existing unsupervised neural network model, PEN permits the emergence of a new dimension of perception in the perception field of the network. When a new dimension of perception is introduced, PEN is able to integrate the new dimensional sensory inputs with the learned prototypes, i.e., the prototypes are mapped to a high-dimensional space, which consists of both the original dimension and the new dimension of the sensory inputs. We call it a Cognition Deepening Process. Artificial data and real-world data are used to test the proposed PEN, and the results show that PEN can work effectively.
【Keywords】:
【Paper Link】 【Pages】:3974-3980
【Authors】: Chang Xu ; Dacheng Tao ; Chao Xu
【Abstract】: Exploiting the information from multiple views can improve clustering accuracy. However, most existing multi-view clustering algorithms are non-convex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and missing data. To overcome this problem, we present a new multi-view self-paced learning (MSPL) algorithm for clustering, that learns the multi-view model by not only progressing from 'easy' to 'complex' examples, but also from 'easy' to 'complex' views. Instead of binarily separating the examples or views into 'easy' and 'complex', we design a novel probabilistic smoothed weighting scheme. Employing multiple views for clustering and defining complexity across both examples and views are shown theoretically to be beneficial to optimal clustering. Experimental results on toy and real-world data demonstrate the efficacy of the proposed algorithm.
【Keywords】:
【Paper Link】 【Pages】:3981-3987
【Authors】: Jingwei Xu ; Yuan Yao ; Hanghang Tong ; XianPing Tao ; Jian Lu
【Abstract】: Recommender system has become an indispensable component in many e-commerce sites. One major challenge that largely remains open is the cold-start problem, which can be viewed as an ice barrier that keeps the cold-start users/items from the warm ones. In this paper, we propose a novel rating comparison strategy (RaPare) to break this ice barrier. The center-piece of our RaPare is to provide a fine-grained calibration on the latent profiles of cold-start users/items by exploring the differences between cold-start and warm users/items. We instantiate our RaPare strategy on the prevalent method in recommender system, i.e., the matrix factorization based collaborative filtering. Experimental evaluations on two real data sets validate the superiority of our approach over the existing methods in cold-start scenarios.
【Keywords】:
【Paper Link】 【Pages】:3988-3994
【Authors】: Yan Yan ; Mingkui Tan ; Ivor W. Tsang ; Yi Yang ; Chengqi Zhang ; Qinfeng Shi
【Abstract】: The user ratings in recommendation systems are usually in the form of ordinal discrete values. To give more accurate prediction of such rating data, maximum margin matrix factorization (M3F) was proposed. Existing M3F algorithms, however, either have massive computational cost or require expensive model selection procedures to determine the number of latent factors (i.e. the rank of the matrix to be recovered), making them less practical for large scale data sets. To address these two challenges, in this paper, we formulate M3F with a known number of latent factors as the Riemannian optimization problem on a fixed-rank matrix manifold and present a block-wise nonlinear Riemannian conjugate gradient method to solve it efficiently. We then apply a simple and efficient active subspace search scheme to automatically detect the number of latent factors. Empirical studies on both synthetic data sets and large real-world data sets demonstrate the superior efficiency and effectiveness of the proposed method.
【Keywords】:
【Paper Link】 【Pages】:3995-4001
【Authors】: Jianbo Yang ; Minh Nhut Nguyen ; Phyo Phyo San ; Xiaoli Li ; Shonali Krishnaswamy
【Abstract】: This paper focuses on human activity recognition (HAR) problem, in which inputs are multichannel time series signals acquired from a set of body-worn inertial sensors and outputs are predefined human activities. In this problem, extracting effective features for identifying activities is a critical but challenging task. Most existing work relies on heuristic hand-crafted feature design and shallow feature learning architectures, which cannot find those distinguishing features to accurately classify different activities. In this paper, we propose a systematic feature learning method for HAR problem. This method adopts a deep convolutional neural networks (CNN) to automate feature learning from the raw inputs in a systematic way. Through the deep architecture, the learned features are deemed as the higher level abstract representation of low level raw time series signals. By leveraging the labelled information via supervised learning, the learned features are endowed with more discriminative power. Unified in one model, feature learning and classification are mutually enhanced. All these unique advantages of the CNN make it outperform other HAR algorithms, as verified in the experiments on the Opportunity Activity Recognition Challenge and other benchmark datasets.
【Keywords】:
【Paper Link】 【Pages】:4002-4008
【Authors】: Quanming Yao ; James T. Kwok
【Abstract】: Matrix factorization tries to recover a low-rank matrix from limited observations. A state-of-the art algorithm is the Soft-Impute, which exploits a special “sparse plus low-rank” structure of the matrix iterates to allow efficient SVD in each iteration. Though Soft-Impute is also a proximal gradient algorithm, it is generally believed thatacceleration techniques are not useful and will destroy the special structure. In this paper, we show that Soft-Impute can indeed be accelerated without compromising the “sparse plus low-rank” structure. To further reduce the per-iteration time complexity, we propose an approximate singular value thresholding scheme based on the power method.Theoretical analysis shows that the proposed algorithm enjoys the fast O(1/T 2) convergence rate of accelerated proximal gradient algorithms. Extensive experiments on both synthetic and large recommendation data sets show that the proposed algorithm is much faster than Soft-Impute and other state-of-the-art matrix completion algorithms.
【Keywords】:
【Paper Link】 【Pages】:4009-4016
【Authors】: Chao Yuan
【Abstract】: The task of machine condition monitoring is to detect machine failures at an early stage such that maintenance can be carried out in a timely manner. Most existing techniques are supervised approaches: they require user annotated training data to learn normal and faulty behaviors of a machine. However, such supervision can be difficult to acquire. In contrast, unsupervised methods don't need much human involvement, however, they face another challenge: how to model the generative (observation) process of sensor signals. We propose an unsupervised approach based on segmental hidden Markov models. Our method has a unifying observation model integrating three pieces of information that are complementary to each other. First, we model the signal as an explicit function over time, which describes its possible non-stationary trending patterns. Second, the stationary part of the signal is fit by an autoregressive model. Third, we introduce contextual information to break down the signal complexity such that the signal is modeled separately under different conditions. The advantages of the proposed model are demonstrated by tests on gas turbine, truck and honeybee datasets.
【Keywords】:
【Paper Link】 【Pages】:4017-4024
【Authors】: Guangxiang Zeng ; Hengshu Zhu ; Qi Liu ; Ping Luo ; Enhong Chen ; Tong Zhang
【Abstract】: Tuning hyper-parameters for large-scale matrix factorization (MF) is very time consuming and sometimes unacceptable. Intuitively, we want to tune hyper-parameters on small sub-matrix sample and then exploit them into the original large-scale matrix. However, most of existing MF methods are scale-variant, which means the optimal hyper-parameters usually change with the different scale of matrices. To this end, in this paper we propose a scale-invariant parametric MF method, where a set of scale-invariant parameters is defined for model complexity regularization. Therefore, the proposed method can free us from tuning hyper-parameters on large-scale matrix, and achieve a good performance in a more efficient way. Extensive experiments on real-world dataset clearly validate both the effectiveness and efficiency of our method.
【Keywords】:
【Paper Link】 【Pages】:4025-4032
【Authors】: Shaodan Zhai ; Tian Xia ; Zhongliang Li ; Shaojun Wang
【Abstract】: We introduce a semi-supervised boosting approach (SSDBoost), which directly minimizes the classification errors and maximizes the margins on both labeled and unlabeled samples, without resorting to any upper bounds or approximations. A two-step algorithm based on coordinate descent/ascent is proposed to implement SSDBoost. Experiments on a number of UCI datasets and synthetic data show that SSDBoost gives competitive or superior results over the state-of-the-art supervised and semi-supervised boosting algorithms in the cases that the labeled data is limited, and it is very robust in noisy cases.
【Keywords】:
【Paper Link】 【Pages】:4033-4040
【Authors】: Liangpeng Zhang ; Ke Tang ; Xin Yao
【Abstract】: Exploration strategy is an essential part of learning agents in model-based Reinforcement Learning. R-MAX and V-MAX are PAC-MDP strategies proved to have polynomial sample complexity; yet, their exploration behavior tend to be overly cautious in practice. We propose the principle of Increasingly Cautious Optimism (ICO) to automatically cut off unnecessarily cautious exploration, and apply ICO to R-MAX and V-MAX, yielding two new strategies, namely Increasingly Cautious R-MAX (ICR) and Increasingly Cautious V-MAX (ICV). We prove that both ICR and ICV are PACMDP, and show that their improvement is guaranteed by a tighter sample complexity upper bound. Then, we demonstrate their significantly improved performance through empirical results.
【Keywords】:
【Paper Link】 【Pages】:4041-4047
【Authors】: Min-Ling Zhang ; Yu-Kun Li ; Xu-Ying Liu
【Abstract】: In multi-label learning, each object is represented by a single instance while associated with a set of class labels. Due to the huge (exponential) number of possible label sets for prediction, existing approaches mainly focus on how to exploit label correlations to facilitate the learning process. Nevertheless, an intrinsic characteristic of learning from multi-label data, i.e. the widely-existing class-imbalance among labels, has not been well investigated. Generally, the number of positive training instances w.r.t. each class label is far less than its negative counterparts, which may lead to performance degradation for most multi-label learning techniques. In this paper, a new multi-label learning approach named Cross-Coupling Aggregation (COCOA) is proposed, which aims at leveraging the exploitation of label correlations as well as the exploration of class-imbalance. Briefly, to induce the predictive model on each class label, one binary-class imbalance learner corresponding to the current label and several multi-class imbalance learners coupling with other labels are aggregated for prediction. Extensive experiments clearly validate the effectiveness of the proposed approach, especially in terms of imbalance-specific evaluation metrics such as F-measure and area under the ROC curve.
【Keywords】:
【Paper Link】 【Pages】:4048-4054
【Authors】: Min-Ling Zhang ; Fei Yu
【Abstract】: In partial label learning, each training example is associated with a set of candidate labels, among which only one is valid. An intuitive strategy to learn from partial label examples is to treat all candidate labels equally and make prediction by averaging their modeling outputs. Nonetheless, this strategy may suffer from the problem that the modeling output from the valid label is overwhelmed by those from the false positive labels. In this paper, an instance-based approach named IPAL is proposed by directly disambiguating the candidate label set. Briefly, IPAL tries to identify the valid label of each partial label example via an iterative label propagation procedure, and then classifies the unseen instance based on minimum error reconstruction from its nearest neighbors. Extensive experiments show that IPAL compares favorably against the existing instance-based as well as other state-of-the-art partial label learning approaches.
【Keywords】:
【Paper Link】 【Pages】:4055-4061
【Authors】: Xianchao Zhang ; Xiaotong Zhang ; Han Liu
【Abstract】: Multi-task clustering and multi-view clustering have severally found wide applications and received much attention in recent years. Nevertheless, there are many clustering problems that involve both multi-task clustering and multi-view clustering, i.e., the tasks are closely related and each task can be analyzed from multiple views. In this paper, for non-negative data (e.g., documents), we introduce a multi-task multi-view clustering (MTMVC) framework which integrates within-view-task clustering, multi-view relationship learning and multi-task relationship learning. We then propose a specific algorithm to optimize the MTMVC framework. Experimental results show the superiority of the proposed algorithm over either multi-task clustering algorithms or multi-view clustering algorithms for multi-task clustering of multi-view data.
【Keywords】:
【Paper Link】 【Pages】:4062-4068
【Authors】: Feipeng Zhao ; Yuhong Guo
【Abstract】: The problem of incomplete labels is frequently encountered in many application domains where the training labels are obtained via crowd-sourcing. The label incompleteness significantly increases the difficulty of acquiring accurate multi-label prediction models. In this paper, we propose a novel semi-supervised multi-label method that integrates low-rank label matrix recovery into the manifold regularized vector-valued prediction framework to address multi-label learning with incomplete labels. The proposed method is formulated as a convex but non-smooth joint optimization problem over the latent label matrix and the prediction model parameters. We then develop a fast proximal gradient descent with continuation algorithm to solve it for a global optimal solution. The efficacy of the proposed approach is demonstrated on multiple multi-label datasets, comparing to related methods that handle incomplete labels.
【Keywords】:
【Paper Link】 【Pages】:4069-4076
【Authors】: Han Zhao ; Zhengdong Lu ; Pascal Poupart
【Abstract】: The ability to accurately model a sentence at varying stages (e.g., word-phrase-sentence) plays a central role in natural language processing. As an effort towards this goal we propose a self-adaptive hierarchical sentence model (AdaSent). AdaSent effectively forms a hierarchy of representations from words to phrases and then to sentences through recursive gated local composition of adjacent segments. We design a competitive mechanism (through gating networks) to allow the representations of the same sentence to be engaged in a particular learning task (e.g., classification), therefore effectively mitigating the gradient vanishing problem persistent in other recursive models. Both qualitative and quantitative analysis shows that AdaSent can automatically form and select the representations suitable for the task at hand during training, yielding superior classification performance over competitor models on 5 benchmark data sets.
【Keywords】:
【Paper Link】 【Pages】:4077-4083
【Authors】: Handong Zhao ; Yun Fu
【Abstract】: Multi-view outlier detection is a challenging problem due to the inconsistent behaviors and complicated distributions of samples across different views. The existing approaches are designed to identify the outlier exhibiting inconsistent characteristics across different views. However, due to the inevitable system errors caused by data-captured sensors or others, there always exists another type of outlier, which consistently behaves abnormally in individual view. Unfortunately, this kind of outlier is neglected by all the existing multi-view outlier detection methods, consequently their outlier detection performances are dramatically harmed.In this paper, we propose a novel Dual-regularized Multi-view Outlier Detection method (DMOD) to detect both kinds of anomalies simultaneously. By representing the multi-view data with latent coefficients and sample-specific errors, we characterize each kind of outlier explicitly. Moreover, an outlier measurement criterion is well-designed to quantify the inconsistency. To solve the proposed non-smooth model, a novel optimization algorithm is proposed in an iterative manner. We evaluate our method on five datasets with different outlier settings. The consistent superior results to other state-of-the-art methods demonstrate the effectiveness of our approach.
【Keywords】:
【Paper Link】 【Pages】:4084-4090
【Authors】: Zhou Zhao ; Ruihua Song ; Xing Xie ; Xiaofei He ; Yueting Zhuang
【Abstract】: With the prevalence of mobile search nowadays, the benefits of mobile query recommendation are well recognized, which provide formulated queries sticking to users’ search intent. In this paper, we introduce the problem of query recommendation on mobile devices and model the user-location-query relations with a tensor representation. Unlike previous studies based on tensor decomposition, we study this problem via tensor function learning. That is, we learn the tensor function from the side information of users, locations and queries, and then predict users’ search intent. We develop an efficient alternating direction method of multipliers (ADMM) scheme to solve the introduced problem. We empirically evaluate our approach based on the mobile query dataset from Bing search engine in the city of Beijing, China, and show that our method can outperform several state-of-the-art approaches.
【Keywords】:
【Paper Link】 【Pages】:4091-4097
【Authors】: Xiaodong Zheng ; Shanfeng Zhu ; Junning Gao ; Hiroshi Mamitsuka
【Abstract】: We address an ensemble clustering problem, where reliable clusters are locally embedded in given multiple partitions. We propose a new nonnegative matrix factorization (NMF)-based method, in which locally reliable clusters are explicitly considered by using instance-wise weights over clusters. Our method factorizes the input cluster assignment matrix into two matrices H and W, which are optimized by iteratively 1) updating H and W while keeping the weight matrix constant and 2) updating the weight matrix while keeping H and W constant, alternatively. The weights in the second step were updated by solving a convex problem, which makes our algorithm significantly faster than existing NMF-based ensemble clustering methods. We empirically proved that our method outperformed a lot of cutting-edge ensemble clustering methods by using a variety of datasets.
【Keywords】:
【Paper Link】 【Pages】:4098-4104
【Authors】: Dawei Zhou ; Jingrui He ; K. Seluk Candan ; Hasan Davulcu
【Abstract】: Rare category detection refers to the problem of identifying the initial examples from underrepresented minority classes in an imbalanced dataset. This problem becomes more challenging in many real applications where the data comes from multiple views, and some views may be irrelevant for distinguishing between majority and minority classes, such as synthetic ID detection and insider threat detection. Existing techniques for rare category detection are not best suited for such applications,as they mainly focus on data with a single view. To address the problem of multi-view rare category detection, in this paper, we propose a novel framework named MUVIR. It builds upon existing techniques for rare category detection with each single view, and exploits the relationship among multiple views to estimate the overall probability of each example belonging to the minority class. In particular,we study multiple special cases of the framework with respect to their working conditions, and analyze the performance of MUVIR in the presence of irrelevant views. For problems where the exact priors of the minority classes are unknown, we generalize the MUVIR algorithm to work with only an upper bound on the priors. Experimental results on both synthetic and real data sets demonstrate the effectiveness of the proposed framework, especially in the presence of irrelevant views.
【Keywords】:
【Paper Link】 【Pages】:4105-4111
【Authors】: Peng Zhou ; Liang Du ; Lei Shi ; Hanmo Wang ; Yi-Dong Shen
【Abstract】: Kernel-based methods, such as kernel k-means and kernel PCA, have been widely used in machine learning tasks. The performance of these methods critically depends on the selection of kernel functions; however, the challenge is that we usually do not know what kind of kernels is suitable for the given data and task in advance; this leads to research on multiple kernel learning, i.e. we learn a consensus kernel from multiple candidate kernels. Existing multiple kernel learning methods have difficulty in dealing with noises. In this paper, we propose a novel method for learning a robust yet low-rank kernel for clustering tasks. We observe that the noises of each kernel have specific structures, so we can make full use of them to clean multiple input kernels and then aggregate them into a robust, low-rank consensus kernel. The underlying optimization problem is hard to solve and we will show that it can be solved via alternating minimization, whose convergence is theoretically guaranteed. Experimental results on several benchmark data sets further demonstrate the effectiveness of our method.
【Keywords】:
【Paper Link】 【Pages】:4112-4118
【Authors】: Peng Zhou ; Liang Du ; Hanmo Wang ; Lei Shi ; Yi-Dong Shen
【Abstract】: Clustering ensemble has emerged as an important extension of the classical clustering problem. It provides a framework for combining multiple base clusterings of a data set to generate a final consensus result. Most existing clustering methods simply combine clustering results without taking into account the noises, which may degrade the clustering performance. In this paper, we propose a novel robust clustering ensemble method. To improve the robustness, we capture the sparse and symmetric errors and integrate them into our robust and consensus framework to learn a low-rank matrix. Since the optimization of the objective function is difficult to solve, we develop a block coordinate descent algorithm which is theoretically guaranteed to converge. Experimental results on real world data sets demonstrate the effectiveness of our method.
【Keywords】:
【Paper Link】 【Pages】:4119-4125
【Authors】: Fuzhen Zhuang ; Xiaohu Cheng ; Ping Luo ; Sinno Jialin Pan ; Qing He
【Abstract】: Transfer learning has attracted a lot of attention in the past decade. One crucial research issue in transfer learning is how to find a good representation for instances of different domains such that the divergence between domains can be reduced with the new representation. Recently, deep learning has been proposed to learn more robust or higher-level features for transfer learning. However, to the best of our knowledge, most of the previous approaches neither minimize the difference between domains explicitly nor encode label information in learning the representation. In this paper, we propose a supervised representation learning method based on deep autoencoders for transfer learning. The proposed deep autoencoder consists of two encoding layers: an embedding layer and a label encoding layer. In the embedding layer, the distance in distributions of the embedded instances between the source and target domains is minimized in terms of KL-Divergence. In the label encoding layer, label information of the source domain is encoded using a softmax regression model. Extensive experiments conducted on three real-world image datasets demonstrate the effectiveness of our proposed method compared with several state-of-the-art baseline methods.
【Keywords】:
【Paper Link】 【Pages】:4126-4133
【Authors】: Jingwei Zhuo ; Jun Zhu ; Bo Zhang
【Abstract】: Feature noising is an effective mechanism on reducing the risk of overfitting. To avoid an explosive searching space, existing work typically assumes that all features share a single noise level, which is often cross-validated. In this paper, we present a Bayesian feature noising model that flexibly allows for dimension-specific or group-specific noise levels, and we derive a learning algorithm that adaptively updates these noise levels. Our adaptive rule is simple and interpretable, by drawing a direct connection to the fitness of each individual feature or feature group. Empirical results on various datasets demonstrate the effectiveness on avoiding extensive tuning and sometimes improving the performance due to its flexibility.
【Keywords】:
【Paper Link】 【Pages】:4134-4135
【Authors】: Filipe Assunção ; João Correia ; Pedro Martins ; Penousal Machado
【Abstract】: Visual families are seen as sets of artifacts that share common visual features allowing one to intuitively classify them as belonging to the same family. An evolutionary approach for the creation of such families of shapes, where each genotype encodes a visual language by means of a non-deterministic grammar is explored.
【Keywords】:
【Paper Link】 【Pages】:4136-4137
【Authors】: Fiammetta Ghedini ; François Pachet ; Pierre Roy
【Abstract】: We present a graphic novel project aiming at illustrating current research results and issues regarding the creative process and its relation with artificial intelligence. The main character, Max Order, is an artist who symbolizes the difficulty of coming up with new, creative ideas, giving up imitation of others and finding one's own style.
【Keywords】:
【Paper Link】 【Pages】:4138-4139
【Authors】: Qi Lyu ; Zhiyong Wu ; Jun Zhu ; Helen Meng
【Abstract】: We propose an automatic music generation demo based on artificial neural networks, which integrates the ability of Long Short-Term Memory (LSTM) in memorizing and retrieving useful history information, together with the advantage of Restricted Boltzmann Machine (RBM) in high dimensional data modelling. Our model can generalize to different musical styles and generate polyphonic music better than previous models.
【Keywords】:
【Paper Link】 【Pages】:4140-4142
【Authors】: Mathieu Ramona ; Giordano Cabral ; François Pachet
【Abstract】: This demonstration presents a concatenative synthesis engine for the generation of musical accompaniments, based on chord progressions. The system takes a player's song recording as input, and generates the accompaniment for any other song, based on the input content. We show that working on accompaniment requires a special care about temporal deviations at the border of the sliced chunks, because they make most of the rhythmic groove. We address it by discriminating accidental deviations against intentional ones, in order to correct the first while keeping the second. We will provide a full demonstration of the system, from the recording process to the generation, in various conditions, inviting the audience to participate.
【Keywords】:
【Paper Link】 【Pages】:4143-4147
【Authors】: Matteo Baldoni ; Cristina Baroglio ; Elisa Marengo ; Viviana Patti
【Abstract】: We analyze the emerging trends from research on multi-agent interaction protocols, on workflows and on business processes. We propose a definition of commitment-based interaction protocols, characterized by the decoupling of the constitutive and the regulative specifications, where the latter is explicitly represented based on constraints among commitments. The 2CL language, for writing regulative specifications, is also presented.
【Keywords】:
【Paper Link】 【Pages】:4148-4152
【Authors】: Marc G. Bellemare ; Yavar Naddaf ; Joel Veness ; Michael Bowling
【Abstract】: In this extended abstract we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by presenting a benchmark set of domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. We conclude with a brief update on the latest ALE developments. All of the software, including the benchmark agents, is publicly available.
【Keywords】:
【Paper Link】 【Pages】:4153-4187
【Authors】: Shlomo Berkovsky ; Jill Freyne ; Harri Oinas-Kukkonen
【Abstract】: Personalized technologies aim to enhance user experience by taking into account users' interests, preferences, and other relevant information. Persuasive technologies aim to modify user attitudes, intentions, or behavior through computer-human dialogue and social influence. While both personalized and persuasive technologies influence user interaction and behavior, we posit that this influence could be significantly increased if the two are combined to create personalized and persuasive systems. For example, the persuasive power of a one-size-fits-all persuasive intervention could be enhanced by considering the user being influenced and their susceptibility to the persuasion being offered. Likewise, personalized technologies could cash in on increased successes, in terms of user satisfaction, revenue, and user experience, if their services used persuasive techniques.
【Keywords】:
【Paper Link】 【Pages】:4188-
【Authors】: Cristina Bosco ; Viviana Patti ; Andrea Bolioli
【Abstract】: This paper focusses on the main issues related to the development of a corpus for opinion and sentiment analysis, with a special attention to irony, and presents as a case study Senti-TUT, a project for Italian aimed at investigating sentiment and irony in social media. We present the Senti-TUT corpus, a collection of texts from Twitter annotated with sentiment polarity. We describe the dataset, the annotation, the methodologies applied and our investigations on two important features of irony: polarity reversing and emotion expressions.
【Keywords】:
【Paper Link】 【Pages】:4163-4167
【Authors】: Diego Calvanese ; Giuseppe De Giacomo ; Domenico Lembo ; Maurizio Lenzerini ; Riccardo Rosati
【Abstract】: We study the data complexity of answering conjunctive queries over Description Logic knowledge bases constituted by a TBox and an ABox. In particular, we are interested in characterizing the FO- rewritability and the polynomial tractability boundaries of conjunctive query answering, depending on the expressive power of the DL used to express the knowledge base. What emerges from our complexity analysis is that the Description Logics of the DL-Lite family are essentially the maximal logics allowing for conjunctive query answering through standard database technology.
【Keywords】:
【Paper Link】 【Pages】:4168-4172
【Authors】: Karthik Dinakar ; Rosalind W. Picard ; Henry Lieberman
【Abstract】: We present an approach for cyberbullying detection based on state-of-the-art text classification and a common sense knowledge base, which permits recognition over a broad spectrum of topics in everyday life. We analyze a more narrow range of particular subject matter associated with bullying and construct BullySpace, a common sense knowledge base that encodes particular knowledge about bullying situations. We then perform joint reasoning with common sense knowledge about a wide range of everyday life topics. We analyze messages using our novel AnalogySpace common sense reasoning technique. We also take into account social network analysis and other factors. We evaluate the model on real-world instances that have been reported by users on Form spring, a social networking website that is popular with teenagers. On the intervention side, we explore a set of reflective user interaction paradigms with the goal of promoting empathy among social network participants. We propose an air traffic control-like dashboard, which alerts moderators to large-scale outbreaks that appear to be escalating or spreading and helps them prioritize the current deluge of user complaints. For potential victims, we provide educational material that informs them about how to cope with the situation, and connects them with emotional support from others. A user evaluation shows that in context, targeted, and dynamic help during cyberbullying situations fosters end-user reflection that promotes better coping strategies.
【Keywords】:
【Paper Link】 【Pages】:4173-4177
【Authors】: Wolfgang Dvorák ; Matti Järvisalo ; Johannes Peter Wallner ; Stefan Woltran
【Abstract】: Abstract argumentation frameworks (AFs) provide the basis for various reasoning problems in the area of Artificial Intelligence. Efficient evaluation of AFs has thus been identified as an important research challenge. So far, implemented systems for evaluating AFs have either followed a straight-forward reduction-based approach or been limited to certain tractable classes of AFs. In this work, we present a generic approach for reasoning over AFs, based on the novel concept of complexity-sensitivity. Establishing the theoretical foundations of this approach, we derive several new complexity results for preferred, semi-stable and stage semantics which complement the current complexity landscape for abstract argumentation, providing further understanding on the sources of intractability of AF reasoning problems. The introduced generic framework exploits decision procedures for problems of lower complexity whenever possible. This allows, in particular, instantiations of the generic framework via harnessing in an iterative way current sophisticated Boolean satisfiability (SAT) solver technology for solving the considered AF reasoning problems. First experimental results show that the SAT-based instantiation of our novel approach outperforms existing systems.
【Keywords】:
【Paper Link】 【Pages】:4178-4182
【Authors】: Piotr Faliszewski ; Edith Hemaspaandra ; Lane A. Hemaspaandra
【Abstract】: Many electoral control and manipulation problems — which we will refer to in general as manipulative actions problems — are NP-hard in the general case. Many of these problems fall into polynomial time if the electorate is single-peaked, i.e., is polarized along some axis/issue. However, real-world electorates are not truly single-peaked — for example, there may be some maverick voters — and to take this into account, we study the complexity of manipulative-action algorithms for the case of nearly single-peaked electorates.
【Keywords】:
【Paper Link】 【Pages】:4183-4187
【Authors】: Paolo Frasconi ; Fabrizio Costa ; Luc De Raedt ; Kurt De Grave
【Abstract】: We introduce kLog, a novel language for kernel-based learning on expressive logical and relational representations. kLog allows users to specify logical and relational learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, and logic programming. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph — in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. An empirical evaluation shows that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy.
【Keywords】:
【Paper Link】 【Pages】:4188-4192
【Authors】: Micah Hodosh ; Peter Young ; Julia Hockenmaier
【Abstract】: In [Hodosh et al., 2013], we established a ranking based framework for sentence-based image description and retrieval. We introduce a new dataset of images paired with multiple descriptive captions that was specifically designed for these tasks. We also present strong KCCA-based baseline systems for description and search, and perform an in-depth study of evaluation metrics for these two tasks. Our results indicate that automatic evaluation metrics for our ranking-based tasks are more accurate and robust than those proposed for generation-based image description.
【Keywords】:
【Paper Link】 【Pages】:4193-4196
【Authors】: Hsun-Ping Hsieh ; Cheng-Te Li ; Shou-De Lin
【Abstract】: Location-based services allow users to perform geo-spatial recording actions, which facilitates the mining of the moving activities of human beings. This paper proposes a system, TimeRouter, to recommend time-sensitive trip routes consisting of a sequence of locations with associated time stamps based on knowledge extracted from large-scale location check-in data. We first propose a statistical route goodness measure considering: (a) the popularity of places, (b) the visiting order of places, (c) the proper visiting time of each place, and (d) the proper transit time from one place to another. Then we construct the time-sensitive route recommender with two major functions: (1) constructing the route based on the user-specified source location with the starting time, (2) composing the route between the specified source location and the destination location given a starting time. We devise a search method, Guidance Search, to derive the routes efficiently and effectively. Experiments on Gowalla check-in datasets with user study show the promising performance of our proposed route recommendation method.
【Keywords】:
【Paper Link】 【Pages】:4197-4201
【Authors】: Frank Hutter ; Lin Xu ; Holger Hoos ; Kevin Leyton-Brown
【Abstract】: Perhaps surprisingly, it is possible to predict how long an algorithm will take to run on a previously unseen input, using machine learning techniques to build a model of the algorithm's runtime as a function of problem-specific instance features. Such models have many important applications and over the past decade, a wide variety of techniques have been studied for building such models. In this extended abstract of our 2014 AI Journal article of the same title, we summarize existing models and describe new model families and various extensions. In a comprehensive empirical analysis using 11 algorithms and 35 instance distributions spanning a wide range of hard combinatorial problems, we demonstrate that our new models yield substantially better runtime predictions than previous approaches in terms of their generalization to new problem instances, to new algorithms from a parameterized space, and to both simultaneously.
【Keywords】:
【Paper Link】 【Pages】:4202-4206
【Authors】: Massimo Poesio ; Jon Chamberlain ; Udo Kruschwitz ; Livio Robaldo ; Luca Ducceschi
【Abstract】: We are witnessing a paradigm shift in human language technology that may well have an impact on the field comparable to the statistical revolution: acquiring large-scale resources by exploiting collective intelligence. An illustration of this approach is Phrase Detectives, an interactive online game-with-a-purpose for creating anaphorically annotated resources that makes use of a highly distributed population of contributors with different levels of expertise. The paper gives an overview of all aspects of Phrase Detectives, from the design of the game and the methods used, to the results obtained so far. It furthermore summarises the lessons that have been learnt in developing the game to help other researchers assess and implement the approach.
【Keywords】:
【Paper Link】 【Pages】:4207-4211
【Authors】: Munindar P. Singh
【Abstract】: We understand a sociotechnical system as a microsociety in which autonomous parties interact with and about technical objects. We define governance as the administration of such a system by its participants. We develop an approach for governance based on a computational representation of norms. Our approach has the benefit of capturing stakeholder needs precisely while yielding adaptive resource allocation in the face of changes both in stakeholder needs and the environment. We are currently extending this approach to address the problem of secure collaboration and to contribute to the emerging science of cybersecurity.
【Keywords】:
【Paper Link】 【Pages】:4212-4216
【Authors】: Yale Song ; Randall Davis
【Abstract】: We present a new approach to gesture recognition that tracks body and hands simultaneously and recognizes gestures continuously from an unsegmented and unbounded input stream. Our system estimates 3D coordinates of upper body joints and classifies the appearance of hands into a set of canonical shapes. A novel multi-layered filtering technique with a temporal sliding window is developed to enable online sequence labeling and segmentation. Experimental results on the NATOPS dataset show the effectiveness of the approach. We also report on our recent work on multimodal gesture recognition and deep-hierarchical sequence representation learning that achieve the state-of-the-art performances on several real-world datasets.
【Keywords】:
【Paper Link】 【Pages】:4217-4221
【Authors】: Michael Winikoff ; Stephen Cranefield
【Abstract】: Before deploying a software system we need to assure ourselves (and stakeholders) that the system will behave correctly. This assurance is usually done by testing the system. However, it is intuitively obvious that adaptive systems, including agent-based systems, can exhibit complex behaviour, and are thus harder to test. In this paper we examine this "obvious intuition" in the case of Belief-Desire-Intention (BDI) agents, by analysing the number of paths through BDI goal-plan trees. Our analysis confirms quantitatively that BDI agents are hard to test, sheds light on the role of different parameters, and highlights the enormous difference made by failure handling.
【Keywords】:
【Paper Link】 【Pages】:4222-4228
【Authors】: Yu Wu ; Per Austrin ; Toniann Pitassi ; David Liu
【Abstract】: Graphical models, such as Bayesian Networks and Markov networks play an important role in artificial intelligence and machine learning. Inference is a central problem to be solved on these networks. This, and other problems on these graph models are often known to be hard to solve in general, but tractable on graphs with bounded Treewidth. Therefore, finding or approximating the Treewidth of a graph is a fundamental problem related to inference in graphical models. In this paper, we study the approximability of a number of graph problems: Treewidth and Pathwidth of graphs, Minimum Fill-In, and a variety of different graph layout problems such as Minimum Cut Linear Arrangement. We show that, assuming Small Set Expansion Conjecture, all of these problems are NP-hard to approx- imate to within any constant factor in polynomial time.
【Keywords】:
【Paper Link】 【Pages】:4229-4233
【Authors】: Rui Xia ; Chengqing Zong ; Xuelei Hu ; Erik Cambria
【Abstract】: The domain adaptation problem arises often in the field of sentiment classification. There are two distinct needs in domain adaptation, namely labeling adaptation and instance adaptation. Most of current research focuses on the former one, while neglects the latter one. In this work, we propose a joint approach, named feature ensemble plus sample selection (SS-FE), which takes both types of adaptation into account. A feature ensemble (FE) model is first proposed to learn a new labeling function in a feature re-weighting manner. Furthermore, a PCA-based sample selection (PCA-SS) method is proposed as an aid to FE for instance adaptation. Experimental results show that the proposed SS-FE approach could gain significant improvements, compared to individual FE and PCA-SS, due to its comprehensive consideration of both labeling adaptation and instance adaptation.
【Keywords】:
【Paper Link】 【Pages】:4234-4239
【Authors】: Jie Yin ; Sarvnaz Karimi ; Andrew Lampert ; Mark A. Cameron ; Bella Robinson ; Robert Power
【Abstract】: Social media platforms, such as Twitter, offer a rich source of real-time information about real-world events, particularly during mass emergencies. Sifting valuable information from social media provides useful insight into time-critical situations for emergency officers to understand the impact of hazards and act on emergency responses in a timely manner. This work focuses on analyzing Twitter messages generated during natural disasters, and shows how natural language processing and data mining techniques can be utilized to extract situation awareness information from Twitter. We present key relevant approaches that we have investigated including burst detection, tweet filtering and classification, online clustering, and geotagging.
【Keywords】:
【Paper Link】 【Pages】:4240-4246
【Authors】: Elena Botoeva ; Roman Kontchakov ; Vladislav Ryzhikov ; Frank Wolter ; Michael Zakharyaschev
【Abstract】: Deciding inseparability of description logic knowledge bases (KBs) with respect to conjunctive queries is fundamental for many KB engineering and maintenance tasks including versioning, module extraction, knowledge exchange and forgetting. We study the combined and data complexity of this inseparability problem for fragments of Horn-ALCHI, including the description logics underpinning OWL 2 QL and OWL 2 EL.
【Keywords】:
【Paper Link】 【Pages】:4247-4253
【Authors】: Diego Calvanese ; Marco Montali ; Fabio Patrizi ; Giuseppe De Giacomo
【Abstract】: In this paper, we overview the recently introduced general framework of Description Logic Based Dynamic Systems, which leverages Levesque's functional approach to model systems that evolve the extensional part of a description logic knowledge base by means of actions. This framework is parametric w.r.t. the adopted description logic and the progression mechanism. In this setting, we discuss verification and adversarial synthesis for specifications expressed in a variant of first-order mu-calculus, with a controlled form of quantification across successive states, and present key decidability results under the natural assumption of state-boundedness.
【Keywords】:
【Paper Link】 【Pages】:4254-4260
【Authors】: Jilles Steeve Dibangoye ; Christopher Amato ; Olivier Buffet ; François Charpillet
【Abstract】: Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general model for decision-making under uncertainty in cooperative decentralized settings, but are difficult to solve optimally (NEXP-Complete). As a new way of solving these problems, we recently introduced a method for transforming a Dec-POMDP into a continuous-state deterministic MDP with a piecewise-linear and convex value function. This new Dec-POMDP formulation, which we call an occupancy MDP, allows powerful POMDP and continuous-state MDP methods to be used for the first time. However, scalability remains limited when the number of agents or problem variables becomes large. In this paper, we show that, under certain separability conditions of the optimal value function, the scalability of this approach can increase considerably. This separability is present when there is locality of interaction between agents, which can be exploited to improve performance. Unlike most previous methods, the novel continuous-state MDP algorithm retains optimality and convergence guarantees. Results show that the extension using separability can scale to a large number of agents and domain variables while maintaining optimality.
【Keywords】:
【Paper Link】 【Pages】:4261-4267
【Authors】: Michael W. Floyd ; Michael Drinkwater ; David W. Aha
【Abstract】: The addition of a robot to a team can be difficult if the human teammates do not trust the robot. This can result in underutilization or disuse of the robot, even if the robot has skills or abilities that are necessary to achieve team goals or reduce risk. To help a robot integrate itself with a human team, we present an agent algorithm that allows a robot to estimate its trustworthiness and adapt its behavior accordingly. As behavior adaptation is performed, using case-based reasoning (CBR), information about the adaptation process is stored and used to improve the efficiency of future adaptations.
【Keywords】:
【Paper Link】 【Pages】:4268-4274
【Authors】: Negar Hariri ; Bamshad Mobasher ; Robin Burke
【Abstract】: Recommender systems have become essential tools in many application areas as they help alleviate information overload by tailoring their recommendations to users' personal preferences. Users' interests in items, however, may change over time depending on their current situation. Without considering the current circumstances of a user, recommendations may match the general preferences of the user, but they may have small utility for the user in his/her current situation. We focus on designing systems that interact with the user over a number of iterations and at each step receive feedback from the user in the form of a reward or utility value for the recommended items. The goal of the system is to maximize the sum of obtained utilities over each interaction session. We use a multi-armed bandit strategy to model this online learning problem and we propose techniques for detecting changes in user preferences. The recommendations are then generated based on the most recent preferences of a user. Our evaluation results indicate that our method can improve the existing bandit algorithms by considering the sudden variations in the user's feedback behavior.
【Keywords】:
【Paper Link】 【Pages】:4275-4281
【Authors】: Piotr Krysta ; Orestis Telelis ; Carmine Ventre
【Abstract】: We design and analyze deterministic truthful approximation mechanisms for multi-unit combinatorial auctions involving a constant number of distinct goods, each in arbitrary limited supply. Prospective buyers (bidders) have preferences over multisets of items, i.e., for more than one unit per distinct good, that are expressed through their private valuation functions. Our objective is to determine allocations of multisets that maximize the Social Welfare approximately. Despite the recent theoretical advances on the design of truthful combinatorial auctions (for multiple distinct goods in unit supply) and multi-unit auctions (for multiple units of a single good), results for the combined setting are much scarcer. We elaborate on the main developments of [Krysta et al., AAMAS 2013], concerning bidders with multi-minded and submodular valuation functions, with an emphasis on the presentation of the relevant algorithmic techniques.
【Keywords】:
【Paper Link】 【Pages】:4282-4288
【Authors】: Leonid Libkin
【Abstract】: The standard way of answering queries over incomplete databases is to compute certain answers, defined as the intersection of query answers on all complete databases that the incomplete database represents. But is this universally accepted definition correct? We argue that this ``one-size-fits-all'' definition can often lead to counterintuitive or just plain wrong results, and propose an alternative framework for defining certain answers. We combine three previously used approaches, based on the semantics and representation systems, on ordering incomplete databases in terms of their informativeness, and on viewing databases as knowledge expressed in a logical language, to come up with a well justified and principled notion of certain answers. Using it, we show that for queries satisfying some natural conditions (like not losing information if a more informative input is given), computing certain answers is surprisingly easy, and avoids the complexity issues that have been associated with the classical definition.
【Keywords】:
【Paper Link】 【Pages】:4289-4295
【Authors】: Dougal Maclaurin ; Ryan Prescott Adams
【Abstract】: Markov chain Monte Carlo (MCMC) is a popular tool for Bayesian inference.However, MCMC cannot be practically applied to large data sets because of theprohibitive cost of evaluating every likelihood term at every iteration. Here we present Firefly Monte Carlo (FlyMC) MCMC algorithm with auxiliary variables that only queries the likelihoods of a subset of the data at each iteration yet simulates from the exact posterior distribution. FlyMC is compatible with modern MCMC algorithms, and only requires a lower bound on the per-datum likelihood factors. In experiments, we find that FlyMC generates samples from the posterior more than an order of magnitude faster than regularMCMC, allowing MCMC methods to tackle larger datasets than were previously considered feasible.
【Keywords】:
【Paper Link】 【Pages】:4296-4302
【Authors】: Peter Organisciak ; Jaime Teevan ; Susan T. Dumais ; Robert C. Miller ; Adam Tauman Kalai
【Abstract】: Personalization aims to tailor content to a person's individual tastes. As a result, the tasks that benefit from personalization are inherently subjective. Many of the most robust approaches to personalization rely on large sets of other people's preferences. However, existing preference data is not always available. In these cases, we propose leveraging online crowds to provide on-demand personalization. We introduce and evaluate two methods for personalized crowdsourcing: taste-matching for finding crowd workers who are similar to the requester, and taste-grokking, where crowd workers explicitly predict the requester's tastes. Both approaches show improvement over a non-personalized baseline, with taste-grokking performing well in simpler tasks and taste-matching performing well with larger crowds and tasks with latent decision-making variables.
【Keywords】:
【Paper Link】 【Pages】:4303-4309
【Authors】: Florian Pommerening ; Gabriele Röger ; Malte Helmert ; Blai Bonet
【Abstract】: Many heuristics for cost-optimal planning are based on linear programming. We cover several interesting heuristics of this type by a common framework that fixes the objective function of the linear program. Within the framework, constraints from different heuristics can be combined in one heuristic estimate which dominates the maximum of the component heuristics. Different heuristics of the framework can be compared on the basis of their constraints. We present theoretical results on the relation between existing heuristics and experimental results that demonstrate the potential of the proposed framework.
【Keywords】:
【Paper Link】 【Pages】:4310-4316
【Authors】: Fabrizio Riguzzi ; Elena Bellodi ; Evelina Lamma ; Riccardo Zese
【Abstract】: Modeling real world domains requires ever more frequently to represent uncertain information. The DISPONTE semantics for probabilistic description logics allows to annotate axioms of a knowledge base with a value that represents their probability. In this paper we discuss approaches for performing inference from probabilistic ontologies following the DISPONTE semantics. We present the algorithm BUNDLE for computing the probability of queries. BUNDLE exploits an underlying Description Logic reasoner, such as Pellet, in order to find explanations for a query. These are then encoded in a Binary Decision Diagram that is used for computing the probability of the query.
【Keywords】:
【Paper Link】 【Pages】:4317-4323
【Authors】: Amir Shareghi Najar ; Antonija Mitrovic ; Bruce M. McLaren
【Abstract】: Research shows that for novices learning from worked examples is superior to unsupported problem solving. Additionally, several studies have shown that learning from examples results in faster learning in comparison to supported problem solving in Intelligent Tutoring Systems. In a previous study, we have shown that alternating worked examples and problem solving was superior to using just one type of learning tasks. In this paper we present a study that compares learning from a fixed sequence of alternating worked examples and tutored problem solving to a strategy that adaptively decides how much assistance to provide to the student. The adaptive strategy determines the type of task (a worked example, a faded example or a problem to solve) based on how much assistance the student needed in the previous problem. In faded examples, the student needed to complete one or two steps. The results show that students in the adaptive condition learned significantly more than their peers who were presented with a fixed sequence of worked examples and problems.
【Keywords】:
【Paper Link】 【Pages】:4324-4330
【Authors】: Roni Stern ; Scott Kiesel ; Rami Puzis ; Ariel Felner ; Wheeler Ruml
【Abstract】: Most work in heuristic search considers problems where a low cost solution is preferred (MIN problems). In this paper, we investigate the complementary setting where a solution of high reward is preferred (MAX problems). Example MAX problems include finding a longest simple path in a graph, maximal coverage, and various constraint optimization problems. We examine several popular search algorithms for MIN problems and discover the curious ways in which they misbehave on MAX problems. We propose modifications that preserve the original intentions behind the algorithms but allow them to solve MAX problems, and compare them theoretically and empirically. Interesting results include the failure of bidirectional search and close relationships between Dijkstra's algorithm, weighted A*, and depth-first search.
【Keywords】:
【Paper Link】 【Pages】:4331-4338
【Authors】: Christopher Makoto Wilt ; Wheeler Ruml
【Abstract】: When an optimal solution is not required, satisficing search methods such as greedy best-first search are often used to find solutions quickly. In work on satisficing search, there has been substantial attention devoted to how to solve problems associated with local minima or plateaus in the heuristic function. One technique that has been shown to be quite promising is using an alternative heuristic function that does not estimate cost-to-go, but rather estimates distance-to-go. There is currently little beyond intuition to explain its superiority. We begin by empirically showing that the success of the distance-to-go heuristic appears related to its having smaller local minima. We then discuss a reasonable theoretical model of heuristics and show that, under this model, the expected size of local minima is higher for a cost-to-go heuristic than a distance-to-go heuristic, offering a possible explanation as to why distance-to-go heuristics tend to outperform cost-to-go heuristics.
【Keywords】:
【Paper Link】 【Pages】:4339-4340
【Authors】: Martin Aleksandrov
【Abstract】: Hunger is a major problem even in developed countries like Australia. We are working with a social startup, Foodbank Local, and local charities at distributing donated food more efficiently. This food must first be allocated to these charities and then delivered to the end customers. In this abstract, we give a formulation of this real-world online fair division problem that the food banks face every day. The products arrive during the day and are indivisible. As a very first step, we focus in here on designing simple mechanisms allocating the food more efficiently. In future, we also plan on investigating more closely the frontier between the allocation and the transportation frameworks within this mixed setting. For instance, shall we dispatch the items as soon as they arrive or shall we apply a given waiting strategy?
【Keywords】:
【Paper Link】 【Pages】:4341-4342
【Authors】: Harald Beck
【Abstract】: Stream reasoning is the task of continuously deriving conclusions on streaming data. As a research theme, it is targeted by different communities which emphasize different aspects, e.g., throughput vs. expressiveness. This thesis aims to advance the theoretical foundations underlying diverse stream reasoning approaches and to convert obtained insights into a prototypical expressive rule-based reasoning system that is lacking to date.
【Keywords】:
【Paper Link】 【Pages】:4343-4344
【Authors】: Lilian Berton ; Alneu de Andrade Lopes
【Abstract】: Semi-Supervised Learning (SSL) techniques have become very relevant since they require a small set of labeled data. In this scenario, graph-based SSL algorithms provide a powerful framework for modeling manifold structures in high-dimensional spaces and are effective for the propagation of the few initial labels present in training data through the graph. An important step in graph-based SSL methods is the conversion of tabular data into a weighted graph. The graph construction has a key role in the quality of the classification in graph-based methods. Nevertheless, most of the SSL literature focuses on developing label inference algorithms without studying graph construction methods and its effect on the base algorithm performance. This PhD project aims to study this issue and proposes new methods for graph construction from ï¬≠at data and improves the performance of the graph-based algorithms.
【Keywords】:
【Paper Link】 【Pages】:4345-4346
【Authors】: Igor Braga
【Abstract】: In this work, we deal with a relatively new statistical tool in machine learning: the estimation of the ratio of two probability densities, or density ratio estimation for short. As a side piece of research that gained its own traction, we also tackle the task of parameter selection in learning algorithms based on kernel methods.
【Keywords】:
【Paper Link】 【Pages】:4347-4348
【Authors】: Tim Brys
【Abstract】: Reinforcement learning algorithms typically require too many `trial-and-error' experiences before reaching a desirable behaviour. A considerable amount of ongoing research is focused on speeding up this learning process by using external knowledge. We contribute in several ways, proposing novel approaches to transfer learning and learning from demonstration, as well as an ensemble approach to combine knowledge from various sources.
【Keywords】:
【Paper Link】 【Pages】:4349-4350
【Authors】: Joel Luis Carbonera ; Mara Abel
【Abstract】: In this thesis, I investigate a hybrid knowledge representation approach that combines classic knowledge representations, such as rules and ontologies, with other cognitively plausible representations, such as prototypes and exemplars. The resulting framework can combine the strengths of each approach of knowledge representation, avoiding their weaknesses. It can be used for developing knowledge-based systems that combine logic-based reasoning and similarity-based reasoning in problem-solving processes.
【Keywords】:
【Paper Link】 【Pages】:4351-4352
【Authors】: Marc Yu-San Chee
【Abstract】: My thesis is largely focused on the parallelisation of UCT (and other Best-First Search techniques) and the ramifications of doing so. I have identified issues with chunking in UCT, created by some forms of parallelisation, and developed a solution to this involving buffering of simulations that appear “out of order” and reevaluation of propagation data. I have developed a technique for scalable distribution of both tree data and computation across a large scale compute cluster. The context of most of my work is General Game Playing, but the techniques themselves are largely agnostic to domain.
【Keywords】:
【Paper Link】 【Pages】:4353-4354
【Authors】: Alejandro Corbellini
【Abstract】: The creation of novel recommendation algorithms for social networks is currently struggling with the volume of available data originating in such environments. Given that social networks can be modeled as graphs, a distributed graph-oriented support to exploit the computing capabilities of clusters arises as a necessity. In this thesis, a platform for graph storage and processing named Graphly is proposed along with GraphRec, an API for easy specification of recommendation algorithms. Graphly and GraphRec hide distributed programming concerns from the user while still allowing fine-tuning of the remote execution. For example, users may customize an algorithm execution using job distribution strategies, without modifying the original code. GraphRec also simplifies the design of graph-based recommender systems by implementing well-known algorithms as “primitives” that can be reused.
【Keywords】:
【Paper Link】 【Pages】:4355-4356
【Authors】: Cristina Cornelio
【Abstract】: This paper presents two frameworks that generalize Conditional Preference networks (CP-nets). The first generalization is the LCP-theory, first order logic theory that provides a rich framework to express preferences. The the second generalization, the PCP-networks, is a probabilistic generalization of CP-nets that models conditional preferences with uncertainty.
【Keywords】:
【Paper Link】 【Pages】:4357-4358
【Authors】: Viviana Cotik
【Abstract】: Automatic detection of relevant terms in medical reports is useful for educational purposes and for clinical research. Natural language processing techniques can be applied in order to identify them. The main goal of this research is to develop a method to identify whether medical reports of imaging studies (usually called radiology reports) written in Spanish are important (in the sense that they have non-negated pathological findings) or not. We also try to identify which finding is present and if possible its relationship with anatomical entities.
【Keywords】:
【Paper Link】 【Pages】:4359-4360
【Authors】: Andrew Cropper
【Abstract】: Most logic-based machine learning algorithms rely on an Occamist bias where textual simplicity of hypotheses is optimised. This approach, however, fails to distinguish between the efficiencies of hypothesised programs, such as quick sort (O(n log n)) and bubble sort (O(n^2)). We address this issue by considering techniques to minimise both the resource complexity and textual complexity of hypothesised programs. We describe an algorithm proven to learn optimal resource complexity robot strategies, and we propose future work to generalise this approach to a broader class of logic programs.
【Keywords】:
【Paper Link】 【Pages】:4361-4362
【Authors】: Wilton de Paula Filho ; Ana Cristina Bicharra Garcia
【Abstract】: The latest research on prediction of the outcome of elections using Twitter data, the election tweets labeling area has hardly been explored. Therefore, the authors of this paper propose to develop a semi-automated model for labeling political tweets. The expected result of this study is to contribute to enhance the quality of the choice of messages used in the labeling process by reducing the time selection of messages and the efficiency of classifying the messages and, thus, to increase the accuracy of the models using this approach. The proposed method could label 2200 messages from the analysis of only 60 messages by 20 users. The first results obtained by the method were higher than the process carried out manually by humans.
【Keywords】:
【Paper Link】 【Pages】:4363-4364
【Authors】: Thiago de Paulo Faleiros ; Alneu de Andrade Lopes
【Abstract】: This paper presents a bipartite graph propagation method to be applied to different tasks in the machine learning unsupervised domain, such as topic extraction and clustering. We introduce the objectives and hypothesis that motivate the use of graph based method, and we give the intuition of the proposed Bipartite Graph Propagation Algorithm. The contribution of this study is the development of new method that allows the use of heuristic knowledge to discover topics in textual data easier than it is possible in the traditional mathematical formalism based on Latent Dirichlet Allocation (LDA). Initial experiments demonstrate that our Bipartite Graph Propagation algorithm return good results in a static context (offline algorithm). Now, our research is focusing on big amount of data and dynamic context (online algorithm).
【Keywords】:
【Paper Link】 【Pages】:4365-4366
【Authors】: Golnoosh Farnadi
【Abstract】: Nowadays web users actively generate content on different social media platforms. The large number of users requiring personalized services creates a unique opportunity for researchers to explore user modelling. Substantial research has been done by utilizing user generated content to model users by applying different classification or regression techniques. These techniques are powerful types of machine learning approaches, however they only partially model social media users. In this work, we introduce a new statistical relational learning (SRL) framework suitable for this purpose, which we call PSLQ. PSLQ is the first SRL framework that supports reasoning with soft quantifiers, such as “most” and “a few.” Indeed, in models for social media it is common to assume that friends are influenced by each other’s behavior, beliefs, and preferences. Thus, having a trait only becomes probable once most or some of one’s friends have that trait. Expressing this dependency requires a soft quantifier, which can be modeled with PSL^Q. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results.
【Keywords】:
【Paper Link】 【Pages】:4367-4368
【Authors】: Nicola Guido
【Abstract】: Static analysis is a core task in query optimization and knowledge base verification. We study static analysis techniques for SPARQL, the standard language for querying Semantic Web data. Specifically, we investigate the query containment problem and query-update independence analysis. We are interested in developing techniques through reductions to the validity problem in logic.
【Keywords】:
【Paper Link】 【Pages】:4369-4370
【Authors】: Athirai Aravazhi Irissappane
【Abstract】: Our research is within the area of artificial intelligence and multi-agent systems. More specifically, we focus on evaluating trust relationships between the agents in multi-agent e-marketplaces and sensor networks and aim to address the following problems: 1) how to identify a trustworthy (good quality) agent; 2) how to cope with dishonest advisors i.e., agents who provide misleading opinions about others.
【Keywords】:
【Paper Link】 【Pages】:4371-4372
【Authors】: Fatemeh Jahedpari
【Abstract】: In this dissertation, we propose an online learning technique to predict a value of a continuous variable by (i) integrating a set of data streams from heterogeneous sources with time varying compositions including (a) changing the quality of data streams, (b) addition or deletion of data streams (ii) integrating the results of several analysis algorithms for each data source when the most suitable algorithm for a given data source is not known a priori (iii) dynamically weighting the prediction of each analysis algorithm and data source on the system prediction based on their varying quality.
【Keywords】:
【Paper Link】 【Pages】:4373-4374
【Authors】: Elizabeth A. Jensen
【Abstract】: After a disaster, instability in the environment may delay search and rescue efforts until it is safe enough for human rescuers to enter the environment. Such delays can be significant, but it is still possible to gather information about the environment in the interim, by sending in a team of robots to scout the area and locate points of interest. We present several algorithms to accomplish this exploration, and provide both theoretical proofs and simulation results that show the algorithms will achieve full exploration of an unknown environment even under communication restrictions.
【Keywords】:
【Paper Link】 【Pages】:4375-4376
【Authors】: Roxane Koitz ; Franz Wotawa
【Abstract】: Increasing complexity of technical systems requires a precise fault localization in order to reduce maintenance costs and system downtimes. Model-based diagnosis has been presented as a method to derive root causes for observed symptoms, utilizing a description of the system to be diagnosed. Practical applications of model-based diagnosis, however, are often prevented by the initial modeling task and computational complexity associated with diagnosis. In the proposed thesis, we investigate techniques addressing these issues. In particular, we utilize a mapping function which converts fault information available in practice into propositional horn logic sentences to be used in abductive model-based diagnosis. Further, we plan on devising algorithms which allow an efficient computation of explanations given the obtained models.
【Keywords】:
【Paper Link】 【Pages】:4377-4378
【Authors】: Thomas Linsbichler
【Abstract】: Abstract argumentation frameworks (AFs) are one of the central formalisms in AI; equipped with a wide range of semantics, they have proven useful in several application domains. In the thesis we want to complete and extend the recent study on expressiveness of argumentation semantics and use these and other theoretical results for implementations of reasoning tasks in AFs. Moreover, we plan to utilize results on realizability in dynamic scenarios of abstract argumentation, such as revision of argumentation frameworks. Hereby, the knowledge of which extensions can occur together is of central interest when trying to achieve a certain outcome. In other words, the ultimate goal of the thesis is to gain theoretical insights on argumentation semantics in order to employ them in practically efficient reasoning systems for both the evaluation and evolution of AFs.
【Keywords】:
【Paper Link】 【Pages】:4379-4380
【Authors】: Adrien Maillard
【Abstract】: Earth observation from space allows us to better understand natural phenomenas such as marine currents, to prevent or follow natural disasters, to follow climate evolution and many other things. To achieve that, there are a great number of artificial satellites orbiting Earth, equipped with high-resolution optical instruments and communicating with a network of ground stations. A satellite is said to be agile when it is able to move quickly around its gravity center along its three axes while moving along its orbit, thanks to gyroscopic actuators. It is equipped with a body-mounted optical instrument. To observe a ground area with the instrument, the satellite must be pointed to it. In practice, users submit observation requests to a mission center, which builds activity plans which are sent to the satellites. These plans contain several types of actions such as orbital maneuvers, acquisition realisations and acquisition downloads towards ground stations. Many techniques are used to synthesize such activity plans. Until now, plans are computed offline on the ground and converted into telecommands that the satellite executes strictly, without any flexibility. However, the satellite evolves in a dynamic environment. Unexpected events occur, such as meteorological changes or new urgent observation requests, that the system must handle. Moreover, resource consumption is not always well known. Until now, to ensure that plans will be executable on board with these uncertainties, they are built with worst-case hypothesis on resources consumption. The objective of this work is to give more autonomy to the satellite without compromising the predictability that is needed for some activities. On the ground, we have high computing power and high uncertainty, while on board we have very low computing power and low uncertainty. The main idea is to share decision-making between ground and board to take advantage of the high computing power on the ground and of the low uncertainty on board. First we apply this idea to download scheduling which consists in scheduling file downloads during ground station visibility windows. Second, we apply this idea to observation planning.
【Keywords】:
【Paper Link】 【Pages】:4381-4382
【Authors】: Travis Mandel
【Abstract】: Reinforcement Learning is beginning to be applied outside traditional domains such as robotics, and into human-centric domains such as healthcare and education. In these domains, two problems are critical to address: We must be able to evaluate algorithms with a collection of prior data if one is available, and we must devise algorithms that carefully trade off exploration and exploitation in such a way that they are guaranteed to converge to optimal behavior quickly, while retaining very good performance with limited data. In this thesis, I examine these two problems, with an eye towards applications to educational games.
【Keywords】:
【Paper Link】 【Pages】:4383-4384
【Authors】: Marie D. Manner
【Abstract】: Autism Spectrum Disorder is a developmental disorder often characterized by limited social skills, repetitive behaviors, obsessions, and/or routines. Using the small humanoid robot NAO, we designed an interactive program to elicit common social cues from toddlers while in the presence of trained psychologists during standard toddler assessments. Our program will capture three different videos of the child-robot interaction and create algorithms to analyze the videos and flag autistic behavior to make diagnosis easier for clinicians. Our novel contributions will be automatic video processing and automatic behavior classification for clinicians to use with toddlers, validated on a large number of subjects and using a reproducible and portable robotic program for the NAO robot.
【Keywords】:
【Paper Link】 【Pages】:4385-4386
【Authors】: Yoko Nakajima
【Abstract】: In my doctoral dissertation I investigate patterns appearing in sentences referring to the future. Such patterns are useful in predicting future events. I base the study on a multiple newspaper corpora. I firstly perform a preliminary study to find out that the patterns appearing in future-reference sentences often consist of disjointed elements within a sentence. Such patterns are also usually semantically and grammatically consistent, although lexically variant. Therefore, I propose a method for automatic extraction of such patterns, applying both grammatical (morphological) and semantic information to represent sentences in morphosemantic structure, and then extract frequent patterns, including those with disjointed elements. Next, I perform a series of experiments, in which I firstly train fourteen classifier versions and compare them to choose the best one. Next, I compare my method to the state-of-the-art, and verify the final performance of the method on a new dataset. I conclude that the proposed method is capable to automatically classify future-reference sentences, significantly outperforming state-of-the-art, and reaching 76% of F-score.
【Keywords】:
【Paper Link】 【Pages】:4387-4388
【Authors】: Aaditya Ramdas
【Abstract】: My research goal involves simultaneously addressing statistical and computational tradeoffs encountered in modern data analysis and high-dimensional machine learning (eg: hypothesis testing, regression, classification). My future interests include incorporating additional constraints like privacy or communication, and settings involving hidden utilities of multiple cooperative agents or competitive adversaries.
【Keywords】:
【Paper Link】 【Pages】:4389-4390
【Authors】: Diederik Marijn Roijers
【Abstract】: In decision-theoretic planning problems, such as (partially observable) Markov decision problems or coordination graphs, agents typically aim to optimize a scalar value function. However, in many real-world problems agents are faced with multiple possibly conflicting objectives. In such multi-objective problems, the value is a vector rather than a scalar, and we need methods that compute a coverage set, i.e., a set of solutions optimal for all possible trade-offs between the objectives. In this project propose new multi-objective planning methods that compute the so-called convex coverage set (CCS): the coverage set for when policies can be stochastic, or the preferences are linear. We show that the CCS has favorable mathematical properties, and is typically much easier to compute that the Pareto front, which is often axiomatically assumed as the solution set for multi-objective decision problems.
【Keywords】:
【Paper Link】 【Pages】:4391-4392
【Authors】: Ariel Rosenfeld
【Abstract】: In this thesis, we focus on automated advising agents. The advice given is a form of relating recommendations or guidance from an automated agent to its human user. Providing the right advice at the right time is extremely complex, and requires a good adaptation to human desires and changing environments. We propose a novel methodology for designing automated advising agents and evaluate it in three real world environments. Our intelligent advising agents were evaluated through extensive field trials, with hundreds of human subjects. A significant increase in human performance as well as a high level of user satisfaction was recorded when they were equipped with our agents.
【Keywords】:
【Paper Link】 【Pages】:4393-4394
【Authors】: Pedro Henrique Santana ; Brian Charles Williams
【Abstract】: This thesis focuses on the problem of temporal planning under uncertainty with explicit safety guarantees, which are enforced by means of chance constraints. We aim at elevating the level in which operators interact with autonomous agents and specify their desired behavior, while retaining a keen sensitivity to risk. Instead of relying on unconditional sequences, our goal is to allow contingent plans to be dynamically scheduled and conditioned on observations of the world while remaining safe. Contingencies add flexibility by allowing goals to be achieved through different methods, while observations allow the agent to adapt to the environment. We demonstrate the usefulness of our chance-constrained temporal planning approaches in real-world applications, such as partially observable power supply restoration and collaborative human-robot manufacturing.
【Keywords】:
【Paper Link】 【Pages】:4395-4396
【Authors】: Sayan D. Sen
【Abstract】: This dissertation develops the intelligent-Coalition Formation framework for Humans and Robots (i-CiFHaR), an intelligent decision making frameworkfor multi-agent coalition formation. i-CiFHaR is a first of its kind that incorporates a library of coalition formation algorithms; employs unsupervised learning to mine crucial patterns among these algorithms; and leverages probabilistic reasoning to derive the most appropriate algorithm(s) to apply in accordance with multiple mission criteria. The dissertation also contributes to the state-of-the-art in swarm intelligence by addressing the search stagnation limitation of existing ant colony optimization algorithms (ACO) by integrating the simulated annealing mechanism. The experimental results demonstrate that the presented hybrid ACO algorithms significantly outperformed the best existing ACO approaches, when applied to three NP-complete optimization problems (e.g., traveling salesman problem, maximal clique problem, multi-agent coalition formation problem).
【Keywords】:
【Paper Link】 【Pages】:4397-4398
【Authors】: Zohreh Shams
【Abstract】: Autonomous agents operating in a dynamic environment must be able to reason and make decisions about actions in pursuit of their goals. In addition, in a normative environment an agent's actions are not only directed by the agent's goals, but also by the norms imposed on the agent. Practical reasoning is reasoning about what to do in a given situation, particularly in the presence of conflicts between the agent's practical attitude such as goals, plans and norms. In this thesis we aim: (i) to introduce a model for normative practical reasoning that allows the agents to plan for multiple and potentially conflicting goals and norms at the same time (ii) to implement the model both formally and computationally, (iii) to identify the best plan for the agent to execute by means of argumentation framework and grounded semantics, (iv) to justify the best plan via argumentation-based persuasion dialogue for grounded semantics.
【Keywords】:
【Paper Link】 【Pages】:4399-4400
【Authors】: Leandro Soriano Marcolino
【Abstract】: Teams of voting agents have great potential in finding optimal solutions. However, there are fundamental challenges to effectively use such teams: (i) selecting agents; (ii) aggregating opinions; (iii) assessing performance. I address all these challenges, with theoretical and experimental contributions.
【Keywords】:
【Paper Link】 【Pages】:4401-4402
【Authors】: Newton Spolaôr ; Maria Carolina Monard ; Huei Diana Lee
【Abstract】: Feature Selection plays an important role in machine learning and data mining, and it is often applied as a data pre-processing step. This task can speed up learning algorithms and sometimes improve their performance. In multi-label learning, label dependence is considered another aspect that can contribute to improve learning performance. A replicable and wide systematic review performed by us corroborates this idea. Based on this information, it is believed that considering label dependence during feature selection can lead to better learning performance. The hypothesis of this work is that multi-label feature selection algorithms that consider label dependence will perform better than the ones that disregard it. To this end, we propose multi-label feature selection algorithms that take into account label relations. These algorithms were experimentally compared to the standard approach for feature selection, showing good performance in terms of feature reduction and predictability of the classifiers built using the selected features.
【Keywords】:
【Paper Link】 【Pages】:4403-4404
【Authors】: Marc van Zee
【Abstract】: An Enterprise Architecture (EA) provides a holistic view of an enterprise. In creating or changing an EA, multiple decisions have to be made, which are based on assumptions about the situation at hand. In this thesis, we develop a framework for reasoning about changing decisions and assumptions, based on logical theories of intentions. This framework serves as the underlying formalism for a recommender system for EA decision making.
【Keywords】:
【Paper Link】 【Pages】:4405-4406
【Authors】: Dongxia Wang
【Abstract】: Trust systems are widely used to facilitate interactions among agents based on trust evaluation. These systems may have robustness issues, that is, they are affected by various attacks. Designers of trust systems propose methods to defend against these attacks. However, they typically verify the robustness of their defense mechanisms (or trust models) only under specific attacks. This raises problems: first, the robustness of their models is not guaranteed as they do not consider all attacks. Second, the comparison between two trust models depends on the choice of specific attacks, introducing bias. We propose to quantify the strength of attacks, and to quantify the robustness of trust systems based on the strength of the attacks it can resist.Our quantification is based on information theory, and provides designers of trust systems a fair measurement of the robustness.
【Keywords】:
【Paper Link】 【Pages】:4407-4408
【Authors】: Leila Wehbe
【Abstract】: My thesis is about studying how the brain organizes complex information when it read text in a naturalistic setting. My work is an integrated interdisciplinary effort which employs functional neuroimaging, and revolves around the development of machine learning methods to uncover multi-layer cognitive processes from brain activity recordings.
【Keywords】:
【Paper Link】 【Pages】:4409-4410
【Authors】: XiaoJian Wu
【Abstract】: I study the problems of optimizing a range of stochastic processes occurring in networks, such as the information spreading process in a social network, species migration processes in landscape network, virus spreading process in human contact network. The standard network design frameworks, such as Steiner tree problem and survival network design problem, fail to capture certain properties of these problems. To solve the problems, the existing techniques, such as standard mixed integer program solver, greedy algorithms or heuristic based methods, also suffer from limited scalability or poor performance. My thesis contributes to both modeling and algorithm development. My first goal is to define a unifying network design framework called stochastic network design (SND) to model a broad class of network design problems under stochasticity. My second goal, which is my major focus, is to design effective and scalable general-purpose approximate algorithms to solve problems that can be formulated by the SND framework.
【Keywords】:
【Paper Link】 【Pages】:4411-4412
【Authors】: Riccardo Zese
【Abstract】: The last years have seen an exponential increase in the interest for the development of methods for combining probability with Description Logics (DLs). These methods are very useful to model real world domains, where incompleteness and uncertainty are common. This combination has become a fundamental component of the Semantic Web.Our work started with the development of a probabilistic semantics for DL, called DISPONTE, that applies the distribution semantics to DLs. Under DISPONTE we annotate axioms of a theory with a probability, that can be interpreted as the degree of our belief in the corresponding axiom, and we assume that each axiom is independent of the others. Several algorithms have been proposed for supporting the development of the Semantic Web. Efficient DL reasoners, such us Pellet, are able to extract implicit information from the modeled ontologies. Despite the availability of many DL reasoners, the number of probabilistic reasoners is quite small. We developed BUNDLE, a reasoner based on Pellet that allows to compute the probability of queries. BUNDLE, like most DL reasoners, exploits an imperative language for implementing its reasoning algorithm. Nonetheless, usually reasoning algorithms use non-deterministic operators for doing inference. One of the most used approaches for doing reasoning is the tableau algorithm which applies a set of consistency preserving expansion rules to an ABox, but some of these rules are non-deterministic.In order to manage this non-determinism, we developed the system TRILL which performs inference over DISPONTE DLs. It implements the tableau algorithm in the declarative Prolog language, whose search strategy is exploited for taking into account the non-determinism of the reasoning process. Moreover, we developed a second version of TRILL, called TRILL^P, which implements some optimizations for reducing the running time. The parameters of probabilistic KBs are difficult to set. It is thus necessary to develop systems which automatically learn this parameters starting from the information available in the KB. We presented EDGE that learns the parameters of a DISPONTE KB, and LEAP, that learn the structure together with the parameters of a DISPONTE KB. The main objective is to apply the developed algorithms to Big Data. Nonetheless, the size of the data requires the implementation of algorithms able to handle it. It is thus necessary to exploit approaches based on the parallelization and on cloud computing. Nowadays, we are working to improve EDGE and LEAP in order to parallelize them.
【Keywords】:
【Paper Link】 【Pages】:4413-4415
【Authors】: Zichen Zhu
【Abstract】: Symmetries are common in many constraint problems. They can be broken statically or dynamically. The focus of this paper is the symmetry breaking during search (SBDS) method that adds conditional symmetry breaking constraints upon each backtracking during search. To trade completeness for efficiency, partial SBDS (ParSBDS) is proposed by posting only a subset of symmetries. We propose an adaptation method recursive SBDS (ReSBDS) of ParSBDS which extends ParSBDS to break more symmetry compositions. We observe that the symmetry breaking constraints added for each symmetry at a search node are nogoods and increasing. A global constraint (incNGs), which is logically equivalent to a set of increasing nogoods, is derived. To further trade pruning power for efficiency, we propose weak-nogood consistency (WNC) for nogoods and a lazy propagator for SBDS (and its variants) using watched literal technology. We further define generalized weak-incNGs consistency (GWIC) for a conjunction of increasing nogoods, and give a lazy propagator for incNGs.
【Keywords】:
【Paper Link】 【Pages】:4416-4422
【Authors】: Steve A. Chien ; Gregg Rabideau ; Daniel Tran ; Martina Troesch ; Joshua Doubleday ; Federico Nespoli ; Miguel Perez Ayucar ; Marc Costa Sitja ; Claire Vallat ; Bernhard Geiger ; Nico Altobelli ; Manuel Fernandez ; Fran Vallejo ; Rafael Andres ; Michael Kueppers
【Abstract】: Rosetta is a European Space Agency (ESA) cornerstone mission that entered orbit around the comet 67P/Churyumov-Gerasimenko in August 2014 and will escort the comet for a 1.5 year nominal mission offering the most detailed study of a comet ever undertaken by humankind. The Rosetta orbiter has 11 scientific instruments (4 remote sensing) and the Philae lander to make complementary measurements of the comet nucleus, coma (gas and dust), and surrounding environment. The ESA Rosetta Science Ground Segment has developed a science scheduling system that includes an automated scheduling capability to assist in developing science plans for the Rosetta Orbiter. While automated scheduling is a small portion of the overall Science Ground Segment (SGS) as well as the overall scheduling system, this paper focuses on the automated and semi-automated scheduling software (called ASPEN-RSSC) and how this software is used.
【Keywords】:
【Paper Link】 【Pages】:4423-
【Authors】: Manuela M. Veloso ; Joydeep Biswas ; Brian Coltin ; Stephanie Rosenthal
【Abstract】: We research and develop autonomous mobile service robots as Collaborative Robots, i.e., CoBots. For the last three years, our four CoBots have autonomously navigated in our multi-floor office buildings for more than 1,000km, as the result of the integration of multiple perceptual, cognitive, and actuations representations and algorithms. In this paper, we identify a few core aspects of our CoBots underlying their robust functionality. The reliable mobility in the varying indoor environments comes from a novel episodic non-Markov localization. Service tasks requested by users are the input to a scheduler that can consider different types of constraints, including transfers among multiple robots. With symbiotic autonomy, the CoBots proactively seek external sources of help to fill-in for their inevitable occasional limitations. We present sampled results from a deployment and conclude with a brief review of other features of our service robots.
【Keywords】: